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Theory and simulation of jump dynamics, diŒusion and phase
equilibrium in nanopores

SCOTT M. AUERBACH†
Department of Chemistry and Department of Chemical Engineering,

University of Massachusetts , Amherst, MA 01003, USA

We review theory and simulation of rare event dynamics, diŒusion and phase
equilibrium in nanopores, focusing on benzene in Na± X and Na± Y zeolites
because of persistent experimental discrepancies. We discuss transition state
theory and its application to zeolite± guest systems, suggesting that calculations
on ¯ exible lattices and at ® nite guest loadings are important areas for future
research. We consider many-body adsorption and diŒusion in zeolites, focusing
on the coupling between rare event dynamics and strong guest ± guest interactions.
We explore the possibility that benzene can undergo phase transitions from low
to high sorbate density in Na± X, and ® nd that this type of phase transition might
explain intriguing loading dependencies of water and ammonia diŒusion in terms
of a subcritical droplet picture of adsorption in zeolites. We discuss various
formulations of non-equilibrium diŒusion through ® nite lattices, and describe a
tracer counter-permeation simulation technique. We ® nd that transport in ® nite
single-® le systems is characterized by a diŒusivity that decreases monotonically
with ® le length, but that this transport is otherwise completely described by Fick’s
laws. We conclude by speculating on the prospect for cross-fertilization between
zeolite science and other ® elds.
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156 S. M. Auerbach

1. Introduction

Zeolites are nanoporous crystalline aluminosilicates with a rich variety of inter-
esting properties and industrial applications [1 ± 3]. With over 100 zeolite framework

topologies [4, 5] synthetically availableÐ each with its own range of compositionsÐ

zeolites oŒer size-, shape- and electrostatically-selective adsorption [6], diŒusion
[7, 8] and reaction [6] up to remarkably high temperatures. Indeed, the technologi-

cal importance of zeolites cannot be overstated, considering that the value of zeolite
catalysis to petroleum cracking is well in excess of 100 billion dollars [9]. Zeolites

are also used as molecular sieves for separating chemical mixtures, as ion exchangers

and ® lters, as environmentally safe detergents, as desiccants for new coolant systems
[10] and as hydrocarbon traps for new cold start catalytic converters [11]. The

closely related mesoporous sieves [12] show promise for separating biomolecules,
and may be useful for making optical electronic materials with substantial quantum

con® nement.

As important as zeolites are technologically, the physical chemistry underlying

their application is poorly known. The wide-ranging applicability of these materials

results from strong zeolite ± guest interactions, which can severely retard guest mobil-

ity, making theoretical modelling nearly intractable [13, 14]. As a result, signi® cant
research activity has emerged in the development and application of theoretical

methods specialized for rare event dynamics, such as transition state theory and ki-

netic Monte Carlo, to problems in zeolite science [15]. In this review, we explore the

interplay among rare event dynamics, diŒusion and phase equilibrium in nanopores,

highlighting our own atomistic simulations and lattice models of molecules in zeolites
[16± 35].

Zeolite nomenclature can be confusing despite its attempt at clarity. A given

zeolite is typically de® ned by its three-letter structure type, its silicon to aluminum

ratio (Si:Al), and its charge-compensating cations. For example, Na± Y is an F̀AU-

type’ zeolite with a Si:Al > 1.5, and with exchangeable Na cations compensating
the negative aluminosilicate framework charge. A diŒerent zeolite, Na± X, is also an

FAU-type zeolite with Na cations, but with Si:Al < 1.5 and hence containing a

higher density of Na cations than that in Na± Y. Other important zeolites include

ZSM-5, which is an `MFI-type’ zeolite with charge compensated either by Na cations

or protons, and silicalite, which is the completely siliceous analogue (Si:Al = 1 ) of

ZSM-5. The majority of studies discussed below have been performed on these four
zeolites.

We have reported a series of theory and simulation studies modelling rare event

dynamics, diŒusion and phase equilibrium of benzene in Na ± X and Na ± Y zeolites
[16± 25, 27, 28, 31, 33], because of persistent, qualitative discrepancies between

diŒerent experimental probes of the coverage dependence of self-diŒusion [7]. We
discuss these studies in detail below to provide a common thread for the review. A

plethora of other interesting systems exists in zeolite science; our choice of content

for the review re¯ ects our own experience in the ® eld, and perhaps our ignorance of

other interesting work. We regret that no review can be complete.

We model benzene in Na ± X and Na ± Y by replacing the zeolite framework with a
three-dimensional lattice of binding sites. Such a lattice model reproduces behaviour

accurately when site residence times are much longer than travel times between sites
[36], which is the case for benzene in Na± X and Na ± Y because of the strong charge ±

quadrupole interaction between Na and benzene [37]. The lattice of benzene binding

sites in Na ± X and Na± Y discussed below contains four tetrahedrally arranged sites
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Jump dynamics, diŒusion and phase equilibrium in nanopores 157

Figure 1. Development of schematic lattice for zeolite ± guest systems.

Figure 2. Speci® c lattice geometry for benzene in Na± Y zeolite.

inside each cage, as well as four doubly shared, tetrahedrally arranged sites that

connect adjacent cages. These intercage sites are typically called ẁindow’ sites. Such

a hierarchy of intracage and window sites is very common in zeolite science, and is

very important for the results described below.

To facilitate visualizing such a complex, three-dimensional lattice, we discuss
an analogous two-dimensional lattice shown below. Figure 1 begins with a square

lattice of window sites in (a), which is then superimposed on a schematic lattice

of zeolite cages in (b), followed by the full lattice including intracage sites in (c).

Figure 2 provides a blow-up showing the actual site geometry for benzene in Na ± X

and Na ± Y, including intracage (SII) and window (W) sites. Dynamics and diŒusion
in this system are strongly in¯ uenced by the competition between intracage motion

and cage-to-cage migration, which is closely related to the competition between

molecular rotation and translation in zeolites. On the other hand, phase transitions

in this system are controlled by eŒective, cage-to-cage attractive interactions which

are mediated by the window sites. Below we describe theory and simulation studies

on this and related lattice models, with an emphasis on comparison with experiment.

Lattice models are very convenient for simulating diŒusion in zeolites at low

loadings. However, because the critical temperature of bulk benzene is over 560 K,

attractive guest ± guest interactions are signi® cant and should not be ignored. Mod-

elling such systems remains challenging because of the coupling between rare event

dynamics and strong guest ± guest interactions, i.e. the competition between adhesive
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158 S. M. Auerbach

and cohesive forces. We outline below our recently developed model for determin-

ing how guest ± guest interactions modify activation energies of site-to-site jumps
[25, 31], and speculate on the feasibility of more rigorous dynamical treatments of

guest ± guest interactions [38].

In what follows, we review transition state theory and its application to zeolite ±

guest systems, suggesting that calculations on ¯ exible lattices and at ® nite guest

loadings are important areas for future research. We explore the possibility that

benzene can undergo phase transitions from low to high sorbate density in Na± X,

and we discuss various formulations of non-equilibrium diŒusion through ® nite
lattices. In general, we ® nd that understanding the thermodynamics of con® ned

¯ uids can be crucial for elucidating the transport properties of molecules in zeolites,

and that explicitly including adsorption and desorption phenomena in open system

diŒusion models is crucial for drawing qualitatively valid conclusions.

2. Transition state dynamics of site-to-site jumps in zeolites

As discussed in section 1, the nature of adsorption in nanopores involves some

degree of con® nement, creating long residence times either in speci® c sites or more

generally in zeolite cages or channels. Atomistic modelling of rare site-to-site or

cage-to-cage motions by molecular dynamics (MD) is therefore very challenging.

These MD studies have been relegated to relatively weakly binding zeolite ± guest
systems and are reviewed in [14]. To model strongly binding zeolite ± guest systems,

theoretical methods specialized for rare event dynamics, such as transition state

theory (TST) and reactive ¯ ux correlation theory (RFCT) must be utilized [39].

The challenge in performing these rare event calculations, as with all molecular

simulations, is to devise a su� ciently accurate potential energy surface (PES), and
to sample statistically relevant regions of the potential.

2.1. Potentials and jump pathways

Most of the molecular simulations performed on zeolite systems to date involve

potential functions, i.e. molecular mechanics force ® elds. In a small number of

studies, the ab initio molecular dynamics method of Car and Parrinello [40] has
been applied to zeolites [41 ± 43]; because these calculations focus on very short time

dynamics, we do not discuss them further. The potential functions used in modelling

zeolite frameworks generally fall into two categories: ionic models and valence bond

models [44]. The ionic models represent the zeolite as a collection of charged species

interacting via short and long range forces [45], while the valence bond models
represent the zeolite via two-body and three-body short range interactions [14]. As

with most molecular simulations [46], short range interactions are only evaluated

within a given cut-oŒdistance according to the minimum image convention, while

long range forces are evaluated with either the Ewald method [46] or the fast

multipole method [23, 47], the choice dictated by the number of atoms allowed to
move in the simulation [23].

Zeolite ± guest interactions typically involve Coulombic and Lennard-Jones terms
[16, 17, 44]:

VZG =

NZX

i=1

NGX

j =1

(
qiqj

rij

+ 4e ij

"
ij

rij

12
ij

rij

6
#)

, (1)

where the charges and Lennard-Jones parameters are ® tted to either ab initio
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calculations [48, 49] or to crystallographic , adsorption and spectroscopic data. To

reduce the complexity of the potential parameter set, further approximations are
typically invoked, such as neglecting Lennard-Jones interactions between positively-

charged guest atoms and Si /Al frame atoms, because the repulsive electrostatic

forces between these atoms supposedly keep them farther apart than the relatively

short range of Lennard-Jones interactions. However, recent calculations indicate

framework radii of 1.2 ÊA for Si and 1.0 ÊA for O [50], suggesting that Si /Al atoms
may protrude into the intracrystalline void space, thereby interacting with guest

species at shorter distances than those predicted by conventional wisdom. Further

ab initio calculations are required to test the severity of neglecting these zeolite ± guest

Lennard-Jones interactions.

A further approximation that is often invoked involves averaging the properties
of Si and Al in the framework, due to the di� culty in quantifying Al distributions

in zeolites [51]. This so-called average T-site model, which derives its name from

the SiO4 and AlO4 tetrahedra in zeolites, may be justi® ed for modelling molecules

adsorbed in zeolites when guest atoms remain relatively far from frame atoms, e.g.

when guest species interact directly with charge-compensating cations. However, we

believe that the average T-site method is unrealistic for modelling cations in zeolites,
because of the close proximity between cations and frame atoms. To ameliorate this

di� culty, Vitale et al. have recently reported a force ® eld for Na ± X zeolite (Si:Al = 1)

using diŒerent charges on Si and Al, which accounts for some but not all cation

locations in Na ± X [52]. Jaramillo and Auerbach have also developed and validated

a new force ® eld for Na cations in FAU-type zeolites, which explicitly distinguishes
Si and Al atoms, as well as diŒerent types of oxygens in the framework. This new

force ® eld gives excellent agreement with experimental data on cation positions, site

occupancies and vibrational frequencies for most cations in Na ± X and Na ± Y [32].

Despite the complexities of these potentials, they are almost always obtained

from ab initio or experimental data for species in their stable, equilibrium con® g-
urations. However, to use these potentials for modelling rare event dynamics, the

potentials must also reproduce energies in the transition state region with equal

® delity. This remains an outstanding problem in physical chemistry, which has been

addressed for gas phase systems using direct dynamics parametrized by correlated

electronic structure methods [53, 54]. Along these lines, Truong [55] and Fermann

and co-workers [34, 35] have performed rate calculations for proton motions in
acidic zeolites using various ¯ avours of quantum TST, parametrized directly by cor-

related electronic structure methods. Unfortunately, such calculations are relegated

to very small clusters, containing perhaps 3 Si /Al atoms. These small cluster models

neglect long range forces [56], and are likely to overestimate framework rigidity.

An important avenue for future research is thus the coupling of direct dynamics
methods with periodic electronic structure models of zeolites [56].

For consistency with the electrostatic treament of zeolite ± guest interactions in

equation (1), we prefer in general to use the ionic model with the approximations

discussed above, by ® tting potential parameters to experimental data. This approach

has been used to develop potentials for a wide variety of zeolite ± guest systems [44],
including aromatics in FAU-type zeolites such as benzene in Na± Y [16], Na ± X [17],

Ca± X [27] and Si ± Y [57, 58], by reproducing sorption sites from crystallography and

energies from thermochemistry. Si ± Y is the completely siliceous analogue of Na ± Y,

i.e. with no Al and hence no charge-compensating cations, which is synthesized by

Z̀ero Defect De-Alumination’ of zeolite Y (ZDDAY) [59]. Using these potentials,

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



160 S. M. Auerbach

Figure 3. Sorption sites and jumps for benzene in Na± Y.

we have calculated minimum energy paths (MEPs) for site-to-site jumps of benzene

in these zeolites, using the constrained optimization technique implemented in our

program D i z z y [60] as described in [16]. In addition, other groups have performed

MEP calculations for aromatics in FAU-type zeolites [58, 61 ± 63]. In general, the
agreement between simulation and experiment is excellent, as discussed below.

To illustrate the results of these MEP calculations, we consider benzene in Na ± Y,

which has two predominant sites [64] shown schematically in ® gures 2 and 3. In the

primary site, denoted as SII, benzene is facially coordinated to a supercage 6-ring,

ca. 2.7 ÊA above a Na cation in site II according to crystallographi c nomenclature. In

the secondary site, denoted as W, benzene lies in the plane of the 12-ring window
separating adjacent supercages, ca. 5.3 ÊA from the SII site. Our theory and simulation

studies (see section 2.3) show that the rate determining step for benzene cage-to-cage

migration in Na ± Y, and hence for intracrystalline diŒusion, is the SII ® W jump, for

which the calculated MEP and energies are shown in ® gure 4. The activation energy

from these calculations, 41 kJ mol 1, is in excellent agreement with 40 2 kJ mol 1,
measured by Isfort et al. with two-dimensional exchange nuclear magnetic resonance

(NMR) [65]. Because this NMR experiment was performed with 5 molecules per

Na ± Y cage, while our calculation involves 1 molecule per zeolite, it remains unclear

whether this favourable comparison is appropriate. Our calculated barrier is also

in very good agreement with the unpublished value of 37 kJ mol 1, measured
by Jobic using quasi-elastic neutron scattering at low benzene loadings [66]. This

computational result provides a picture to go along with these measured activation

energies, hence elucidating the process that is actually probed during diŒusion

measurements.

In general, we believe this level of accuracy can be obtained for a wide variety of
zeolite ± guest systems by carefully constructing potentials and searching for transition

states. Indeed, table 1 shows a comparison between experiment and simulation for

benzene in various FAU-type zeolites, where j Hsorb j is the initial heat of sorption,

Ea is the activation energy for intracage motion, and r̀ef ’ cites the source of data.

The results in table 1 show that these potentials are capable of reproducing all
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(i)

(ii)

Figure 4. SII « W MEP for benzene in Na± Y (transition state indicated in bold), with a
calculated barrier of 41 kJ mol 1.

Table 1. Experiment and theory for benzene energetics (kJ mol 1 ) in various FAU-type
zeolites.

Zeolite Exp j Hsorb j ref Theo j Hsorb j ref Exp Ea ref Theo Ea ref

Ca ± X 134 [67] 119 [27] 62 [68] 75 [27]
Na ± X 73 [69] 70 [17] 14 [17] 15 [17]
Na ± Y 79 [69] 77 [16] 24 [59] 35 [16]
Si± Y 55 [58] 59 [57] 10 [59] 7 [57]

the experimental trends in both thermodynamic and kinetic parameters, often with

quantitative accuracy.

Armed with the success of these potentials, we proceed to calculate pre-

exponential factors for rate coe� cients describing site-to-site jumps in zeolites.

In the next section, we discuss methods for performing transition state theory (TST)

and reactive ¯ ux correlation theory (RFCT) calculations on molecules in zeolites,

illustrating these ideas with results for benzene in Na ± Y.
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162 S. M. Auerbach

2.2. Dividing surface statistics and dynamics

The standard ansatz in TST is to replace the dynamically converged, net reactive
¯ ux from reactants to products with the instantaneous ¯ ux through the transition

state dividing surface. TST is inspired by the fact that, although a dynamical

rate calculation is rigorously independent of the surface through which ¯ uxes are

computed [70], the duration of dynamics required to converge the net reactive

¯ ux is usually shortest when using the transition state dividing surface. The TST
approximation can be formulated for gas phase or condensed phase systems [39, 71,

72], using classical or quantum mechanics [73].

The rate coe� cient for the jump from site i to site j can be expressed classically

as:

ki ® j (t) =
1

c i

h Çq(0) i[r(0)] j [r(t)] i , (2)

where c i is the equilibrium mole fraction of particles in the state i, q is the particle

coordinate perpendicular to the dividing surface bounding state i, i[r] denotes the

Dirac delta function whose value is 1 if the particle lies on the boundary surface of
state i and zero otherwise, and j [r] is the standard step function whose value is

1 if the particle is in state j and zero otherwise. In equation (2), h i signi® es an

average in the canonical ensemble.

Equation (2) represents the ¯ ux of particles ¯ owing through the dividing surface

at time 0, weighted by the step function indicating that only those molecules in site
j are counted in the average at time t. Although ki ® j depends explicitly on time t

in equation (2), ki ® j (t) will become constant for a ® nite but reasonably long period

of time, provided that site-to-site jumps are truly rare events for the system and

temperature of interest. The value of ki ® j (t) in this p̀lateau regime’ is the physically

meaningful rate coe� cient, which should not depend in principle on the choice of
dividing surface. Times in the plateau regime satisfy corr < t rxn, where corr

is the typical time of vibrational motion of the particle in its site and rxn is the

typical time between two r̀eactive’ events. If the rate coe� cient in equation (2) does

not reach a plateau value, but instead decreases linearly with time for a duration

long compared with corr, then the physically meaningful rate coe� cient is obtained

by extrapolating this linear descent back to t = 0. On the other hand, if neither
a plateau regime nor a linear descent can be identi® ed in the time dependence of

ki ® j (t), then chemical kinetics is not a useful phenomenology because site-to-site

jumps are not rare events. All is not lost, though, because straightforward molecular

dynamics can then be used to calculate mobilities.

The standard TST rate coe� cient can be written in the same notation:

kTST
i ® j =

1

c i

h Çq(0) i[r(0)] j [r( )] i , (3)

where is an in® nitesimal time. Unlike equation (2), here all trajectories that leave

site i and enter site j at time 0 are considered reactive; therefore, equation (3)

strongly depends on the exact position of the transition state. The last equation can

be rewritten by replacing the projection operator in position with one in velocity,

i.e. j [r( )] ® [ Çq(0)], yielding the more usual form:

kTST
i ® j =

1

2

2kBT

m

1/ 2
Q‡

Qi

, (4)

where kB is Boltzmann’s constant, T is temperature, m is the reduced mass associated
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with the reaction coordinate, Q‡ is the con® gurational partition function on the

dividing surface and Qi is the con® gurational partition function in the reactant
state i. The last expression can be evaluated without recourse to dynamics, either by

Monte Carlo simulation or in the harmonic approximation by normal mode analysis
[74]. The exact rate coe� cient can then be written as:

ki ® j = kTST
i ® j f ij (t) , (5)

where the so-called dynamical correction factor is:

f ij (t) =
h Çq(0) i[r(0)] j [r(t)] i
h Çq(0) i[r(0)] j [r( )] i

. (6)

The dynamical correction factor is usually evaluated from short molecular dynamics
simulations originating on the dividing surface. For classical systems, f ij (t) always

takes a value between zero and one, and gives the fraction of initial conditions on

the dividing surface that actually lead to reaction at temperature T .

While equations (4)± (6) are standard expressions of TST and RFCT, the exact

way in which they are implemented depends strongly upon the actual system of

interest. Indeed, if the transition state dividing surface is precisely known (as for the
case of an adatom), equation (4) then provides a good ® rst approximation to the

rate coe� cient, and the dynamical correction factor accounts for the possibility that

the particle does not thermalize in the state it has ® rst reached, but instead goes

on to a diŒerent ® nal state. This process is called d̀ynamical recrossing’ if the ® nal

state is identical to the original state, and otherwise is called `multi-site jumping’.
The importance of dynamical recrossing or multi-site jumping depends on a number

of factors, of which the height of the energy barriers and the mechanism of energy

dissipation are essential. More important, perhaps, is the fact that the rate coe� cient

computed via equation (5) does not depend on the exact location of the transition

state, as long as the dynamical correction factor f ij (t) can be evaluated with enough
accuracy.

In a complex system with many degrees of freedom it might be di� cult, or even

impossible, to de® ne rigorously the dividing surface between the states. In this case

the transition state approximation may fail, requiring the use of equation (6) or an

equivalent expression based on a similar correlation function. Indeed, TST assumes

that all trajectories initially crossing the dividing surface in the direction of the prod-
uct state will eventually relax in this state. This statement will be qualitatively false if

the supposed surface does not coincide with the actual dividing surface. In this case,

the dynamical correction factor corrects TST for an inaccurately de® ned dividing

surface, even when dynamical recrossings through the actual dividing surface are

rare. The problem of locating complex dividing surfaces has recently been addressed
using topology [75], statistics [76] and dynamics [77, 78]. These methods share the

perspective that complex dividing surfaces can best be understood by considering

paths that connect the r̀eactant’ and p̀roduct’ potential minima.

TST and RFCT have been applied to zeolite ± guest systems in a number of

interesting studies. These studies were motivated to some extent by the pioneering
work of Demontis et al. [79], who performed the ® rst MD study on a zeolite ±

guest system in 1989. In addition to calculating accurate heats of sorption with

MD, Demontis et al. attempted to use MD to model benzene diŒusion in Na ± Y at

326 K with a 24 ps long simulation. That the length of their simulation is too short to

model diŒusion is borne out by their reported diŒusion coe� cientÐ 4 10 9 m2 s 1 Ð
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164 S. M. Auerbach

appropriate for benzene in Si ± Y, but 2 ± 3 orders of magnitude too large for benzene

in Na ± Y [59].
June et al. reported the ® rst application of TST dynamically corrected with

RFCT for a zeolite ± guest system in 1991 [80], modelling the diŒusion of Xe and

s̀pherical SF6 ’ in silicalite, the siliceous analogue of ZSM-5, an MFI-type zeolite.

This system is su� ciently weakly binding that reasonably converged MD simulations

could be performed for comparison with the rare event dynamics, showing excellent
quantitative agreement in the diŒusivities obtained. This study also showed that

computers available to academic researchers in the early 1990s could produce a

useful overlap between the rare event regime and the molecular dynamics regime.

By modelling the motion of spherical guests in silicalite, June et al. considerably

simpli® ed the task of ® nding dividing surfaces between sorption sites. The dynamical
correction factors obtained by June et al. show that recrossings can diminish rate

coe� cients by as much as a factor of ca. 3, and that multi-site jumps along straight

channels in silicalite [81] contribute to the well known diŒusion anisotropy in

MFI-type zeolites [82].

Snurr et al. then applied harmonic TST to benzene diŒusion in silicalite, as-

suming that benzene and silicalite remain rigid, by using normal mode analysis in
generalized coordinates for the 6 remaining benzene degrees of freedom [83]. Their

results underestimate experimental diŒusivities by one to two orders of magnitude,

probably more from assuming a rigid zeolite than from using harmonic TST. Mag-

inn et al. performed reversible work calculations with a TST ¯ avour on long chain

alkanes in silicalite [84], ® nding that diŒusivities monotonically decrease with chain
length until about n-C8, after which diŒusivities plateau and become nearly constant

with chain length. Green® eld and Theodorou even dared to apply TST to model

molecular penetration through glassy polymers, by computing con® gurational av-

erages involving ca. 350 degrees of freedom [85]. They found an extremely broad

distribution of rate coe� cients for methane jumps in atactic polypropylene at 233 K.
Jousse and co-workers reported a series of MD studies on butene isomers

in channel zeolite-types MEL and TON [26, 86]. Because the site-to-site energy

barriers in these systems are comparable to the thermal energies studied in the

MD simulations, rare event dynamics need not apply. Nonetheless, Jousse and co-

workers showed that even for these relatively low-barrier systems, the magnitudes

and loading dependencies of the MD diŒusivities could be well explained within
a jump diŒusion model, with residence times extracted from the MD simulations.

These studies show once again that with modern computers, the MD regime and

rare event regime can have signi® cant overlap.

Mosell et al. reported a series of TST and RFCT calculations on Xe in Na ±

Y [87, 88] in 1996, and benzene and p-xylene in Na ± Y [63, 89] in 1997. They
calculated the reversible work of dragging a guest species along the cage-to-cage
[111] axis of Na ± Y, and augmented this version of TST with dynamical corrections.

In addition to computing the rate coe� cient for cage-to-cage motion through Na± Y,

Mosell et al. con® rmed that benzene W sites are free energy local minima, while

p-xylene W sites are free energy maxima, i.e. cage-to-cage transition states [63, 89].
Mosell et al. also found relatively small dynamical correction factors, ranging from

0.08 ± 0.39 for benzene and 0.24 ± 0.47 for p-xylene. At about the same time in 1997,

Jousse and Auerbach reported TST and RFCT calculations of speci® c site-to-site

rate coe� cients for benzene in Na ± Y [23], using equation (2) with jump-dependent

dividing surfaces (see ® gure 5). As with Mosell et al., we found that benzene jumps
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Figure 5. Schematic of dividing surfaces for benzene jumps in Na± Y.

to W sites could be de® ned for all temperatures studied. We found dynamical

correction factors mostly above 0.5, suggesting that our jump-dependent dividing
surfaces coincide more closely with the actual ones. Although the ¯ avours of the two

approaches for modelling benzene in Na ± Y diŒered, the ® nal results were remarkably

similar considering that diŒerent force ® elds were used. In particular, Mosell et al.

used MD to sample dividing surface con® gurations, while we applied the Voter

displacement-vector Monte Carlo method [90] for sampling dividing surfaces. The
apparent activation energy for cage-to-cage motion in our study is 44 kJ mol 1, in

very reasonable agreement with 49 kJ mol 1 obtained by Mosell et al. Below we

discuss further the results in [23], to illustrate these TST and RFCT calculations.

As a prelude to our discussion of many-body diŒusion in section 3, we note that

Tunca and Ford have reported TST rate coe� cients for Xe cage-to-cage jumps at

high loadings in ZK-4 zeolite, the siliceous analogue of Na ± A, an L̀TA-type’ zeolite
[38]. These calculations deserve several remarks. First, because this study treats

multiple Xe atoms simultaneously, de® ning the reaction coordinate and dividing

surface can become quite complex. Tunca and Ford addressed this problem by
considering averaged cage sites, instead of speci® c intracage sorption sites, which is

valid because their system involves relatively weak zeolite ± guest interactions. They

further assume a one-body reaction coordinate and a dividing surface, regardless

of loading, which is tantamount to assuming that the window separating adjacent

-cages in ZK-4 can only hold one Xe at a time, and that cooperative many-
Xe cage-to-cage motions are unlikely. Second, Tunca and Ford advocate separate

calculations of Q‡ and Qi for use in equation (4), as opposed to the conventional

approach of calculating ratios of partition functions, namely free energies [90]. It

is not yet obvious to the author whether separating these calculations is worth the

eŒort. Third, Tunca and Ford have developed a recursive algorithm for building
up (N + 1)-body partition functions from N-body partition functions, using a t̀est

particle’ method developed for modelling the thermodynamics of liquids. Although

the approach of Tunca and Ford has a restricted regime of applicability, and is not

yet able to compare with experiment, it nonetheless seems promising in its direct

treatment of many-body diŒusion eŒects.
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166 S. M. Auerbach

Figure 6. Time dependence of the dynamical correction factor for the SII ® SII benzene
jump in Na± Y at 298 K.

To illustrate the mechanics of TST and RFCT calculations, we discuss our results

for benzene in Na ± Y [23]. We calculated rate coe� cients for the following jumps:

SII ® SII, SII ® W, W ® SII and W ® W (see ® gures 3 and 4). The dividing
surfaces used for these jumps are shown schematically in ® gure 5. These surfaces

are justi® ed by a number of features of the actual sites: (i) the symmetry of the

SII ® SII and W ® W paths requires the corresponding dividing surface to be on

the symmetry plane; (ii) the transition state for the SII ® W jump happens to lie

near the line joining the SII and W sites. Figure 5 shows that a problem appears for
the W ® W jump: the dividing surface is indeed reduced to naught by the W ® SII

dividing planes. This does not mean that there is actually no dividing surface, but

only that it cannot be de® ned in as simple and logical a way as for the SII ® SII

and SII ® W processes. Boundaries were placed on the W ± W symmetric plane on

each side in the middle 4-ring, so that its total extent amounts to 2.4 ÊA. To extend

the boundary surface further would cause it to approach the SII site, which is not a
possible transition state for the W ® W jump.

In general, dividing surfaces for benzene jumps should involve no fewer than 5

degrees of freedom, to account for benzene’s orientational anisotropy. Our dividing
surfaces clearly ignore this anisotropy, which could lead to sizable error in the TST

rate coe� cients. To test this, we calculated TST rates by averaging over 200 000

Monte Carlo steps in both the reactant and transition state. The corresponding

dynamical correction factors were calculated by averaging over 2000 MD trajectories

initialized on the dividing surface, and propagated for ca. 10 ps or until ® nal
thermalization was con® rmed. A typical TST calculation for this system required

10 CPU hours on an IBM RS/6000 PowerPC 604e 200 MHz processor, while the

corresponding dynamical correction required ca. 48 additional CPU hours. Figure 6

shows the time dependence of the dynamical correction factor for the SII ® SII jump

at 298 K. In general, f ij (t) should start at 1 and decrease non-monotonicall y to the
plateau value. In ® gure 6, the initial rise of f ij (t) is an artefact of the calculation,

due to the fact that our dividing surface has a width [90], set in this calculation

to 0.2 ÊA. The behaviour of f ij (t) agrees well with what has been described in the

literature: after an initial rapid decay, f ij (t) decays very slowly to its plateau value,

in this case 0.687. We have also con® rmed that the RFCT results are independent of
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Table 2. Apparent Arrhenius parameters from rate coe� cients for benzene jumps among
SII and W sites in Na± Y, using TST and RFCT methods. Note the failure of TST for
the W ® W jump.

Activation energy (kJ mol 1) Arrhenius prefactors

Jump process MEP TST RFCT TST RFCT

W ® SII 16 17.0 0.1 16.4 0.3 2.7 1012 s 1 1.1 1012 s 1

W ® W 18 ® 1.1 0.5 ¬ 15.1 4.0 6.0 1011 s 1 2.4 1011 s 1

SII ® W 41 44.8 0.1 44.4 0.1 1.6 1013 s 1 0.8 1013 s 1

SII ® SII 35 37.4 0.1 36.8 0.3 1.6 1013 s 1 0.8 1013 s 1

Keq(SII ® W) 25 28.0 0.2 7.1

dividing surface, while the TST rates depend strongly on dividing surface location,

by redoing the calculations using a slightly diŒerent transition state.

The fact that the dynamical correction factor for the SII ® SII rate coe� cient

plateaus near 0.7 suggests that neglecting benzene’s anisotropy in de® ning the

SII ® SII dividing surface is reasonable. To determine if the other dividing surfaces

for benzene in Na ± Y work as well, we calculated TST and RFCT rates for all

4 jumps over the temperature range 150± 500 K. The resulting apparent activation
energies and pre-exponential factors are shown in table 2, along with the apparent

Arrhenius parameters for the SII ® W equilibrium coe� cient.

Several remarks can be made about the data in table 2. First, the equilibrium

coe� cient energetically favours the SII site for its strong -cation interaction, but
entropically favours the W site for its greater ¯ exibility; a trend that is mirrored

by the rate coe� cients. This entropic predisposition for the W site is important

for benzene phase transitions in Na± X [28], discussed in section 3.2. Second, we

clearly see the failure of TST for modelling the W ® W process, not because TST

is inaccurate, but rather because our implementation of TST does not account for

the anisotropy of the actual W ® W dividing surface. Third, because the W ® W
prefactor is nearly an order of magnitude smaller than that for the W ® SII jump,

there is likely to be a strong entropic bottleneck in the W ® W jump. This can arise

from either a tight transition state, which TST should be able to handle, or from

other ® nal states that lie close to the W ® W dividing surface, which TST cannot

treat accurately because of its blindness to the eventual fate of the dividing surface
¯ ux. Figure 5 shows that the W ® W path crosses right through the SII ® SII path,

suggesting that most of the ¯ ux through the W ® W dividing surface relaxes to an

SII site. Thus, most of these W ® W dividing surface con® gurations have nothing

to do with actual W ® W jumps, but do have energies slightly higher than the W

site energy, explaining the very small TST activation energy for this jump.

Before leaving this section, we address a question that is raised at every meeting

on zeolite science: what eŒect do lattice vibrations play in molecular jump dynamics?

While we cannot provide a comprehensive answer, we can suggest some guidelines
[14, 91]. For guest molecules that ® t tightly into zeolite pores, molecular simulations
that neglect lattice vibrations will almost surely overestimate cage-to-cage jump

activation energies, because rigid-lattice simulations ignore the cooperative eŒect of

ring breathing with molecular motion. Such an error in the activation energy will

produce rate coe� cients that can be several orders of magnitude too small, as Snurr

et al. found for benzene in silicalite [83]. For guest molecules that ® t loosely into
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168 S. M. Auerbach

zeolite pores, rigid-framework MD or TST simulations are likely to overestimate the

external vibrational frequencies of guests during site-to-site jump attempts, because
keeping the framework rigid hardens the vibrational environment of an adsorption

site. Such an error in attempt frequencies is not likely to produce order-of-magnitud e

errors in rate coe� cients or diŒusion coe� cients, because rates and diŒusivities are

only linearly proportional to attempt frequencies [80]. To examine these eŒects, we

performed several TST calculations allowing for benzene internal ¯ exibility and/or
Na vibration in Na ± Y zeolite [91]. A typical TST calculation with ¯ exible benzene

and movable Na cations required 35 CPU hours on an IBM PowerPC. These TST

calculations show only 1 kJ mol 1 decreases in activation energies, and very modest

changes in pre-exponential factors.

We thus ® nd that site-to-site jump dynamics in zeolites are well described by
TST when the initial or ® nal sites involve relatively deep potential mimina, and that

molecular jump dynamics in a large pore zeolite is well described by including only

a small number of degrees of freedom. We now turn our attention to calculating

observable mobilities arising from molecular translation and rotation.

2.3. DiŒusion and orientational randomization at in® nite dilution
In order to make contact with measurements of transport through zeolites [7, 8],

we must relate our site-to-site rate coe� cients with quantities such as the self-

diŒusivity and transport diŒusivity, which arise from molecular translation; or we

can model NMR correlation times, which are controlled by molecular rotation. At

in® nite dilution on an M-dimensional hypercubic lattice, i.e. 1D, 2D square, 3D cubic,
etc., both the self and transport diŒusivity are given by D0 = khopa2 = (1/ 2M)ka2,

where khop is the rate coe� cient for jumps between nearest neighbour sites, a is the

distance between such sites, and 1/ k is the mean site residence time [36]. This result

neglects multi-site hops, which have jump distances greater than a. Unfortunately, site

lattices in zeolites are much more complicated than hypercubic, apparently defying
such simple analytical formulas. To address this complexity, many researchers have

applied kinetic Monte Carlo (KMC) to modelling diŒusion in zeolites, parametrized

either by ad hoc jump frequencies or by atomistically calculated jump rate coe� cients.

KMC models diŒusion on a lattice as a random walk composed of uncorrelated,

single molecule jumps. KMC is isomorphic to the more conventional Monte Carlo

algorithms [46], except that in a KMC simulation random numbers are compared to
ratios of rate coe� cients, instead of ratios of Boltzmann factors. However, if the pre-

exponential factors cancel in a ratio of rate coe� cients, then a ratio of Boltzmann

factors does arise, where the relevant energies are activation energies. In addition to

modelling transport in zeolites, KMC has been used to model adsorption kinetics

on surfaces [92], and even surface growth itself [93]. The fundamental assumption
in KMC is that successive jumps are uncorrelated, leading to a Poisson distribution

of jump times controlled by the pre-calculated rate coe� cients. This assumption

can break down when many-body motions become correlated, as can happen with

polymer dynamics or surface reconstructions [77]. Despite these concerns, KMC

remains a powerful technique for modelling jumps of neutral molecules in zeolites.
KMC can be implemented with constant time-step algorithms where jumps are

accepted or rejected based on the kinetic Metropolis prescription, in which a ratio

of rate coe� cients, khop/ kref , is compared to a random number [19, 94]. Here kref

is a reference rate that controls the temporal resolution of the calculation. KMC

can also be implemented with variable time-step algorithms, in which a hop is made
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every KMC step and the system clock is updated accordingly [95, 96]. The mean

time elapsed before each hop is the inverse of the total rate coe� cient to leave the
originating site. In all cases, the probability of a particular jump is proportional

to the associated rate coe� cient. We ® nd that constant time-step KMC is more

convenient for calculating correlation functions, while variable time-step KMC is

more e� cient for calculating mean square displacements [19].

Most KMC simulations of diŒusion in zeolites are performed at high guest

loadings, to explore the eŒects on transport of guest ± guest interactions. We review

these studies below in section 3. A handful of studies have been reported modelling

diŒusion in zeolites at in® nite dilution with KMC, to relate fundamental rate

coe� cients with observable self diŒusivities for particular lattice topologies. June et

al. augmented their TST and RFCT study with KMC calculations of Xe and SF6

self-diŒusivities in silicalite [80]. They obtained excellent agreement among apparent

activation energies for Xe diŒusion calculated using MD, KMC with TST jump

rates, and KMC with RFCT jump rates. The resulting activation energies fall in

the range 5 ± 6 kJ mol 1, which unfortunately is much lower than the experimentally

determined values of 15 and 26 kJ mol 1 [97, 98]. van Tassel et al. reported a similar
study in 1994 on methane diŒusion in zeolite A, ® nding excellent agreement between

self-diŒusivities calculated with KMC and MD [99]. Auerbach et al. reported KMC

simulations of benzene diŒusion in Na ± Y, showing that the SII ® W jump controls

the temperature dependence of diŒusion [16], as discussed further below. Because

benzene residence times at SII sites are so long, these KMC studies could not
be compared directly with MD, but nonetheless yield very good agreement when

compared with experiment (see section 2.1).

KMC simulations of diŒusion in zeolites at in® nite dilution usually involve a

relatively small con® guration space, and a modest number of input parameters.

The results of KMC for su� ciently simple systems can often be anticipated, e.g.
the apparent activation energy for self-diŒusion in zeolites is usually controlled by

jumping through a zeolite window. Indeed, consider the case of benzene in Na ± Y.

Because the lattice of supercages is a diamond lattice, as shown in ® gure 2, we can

simplify the motion of benzene in Na ± Y by imagining thatÐ although hops really

take place among SII and W sitesÐ long range motion involves jumps from one
c̀age site’ to an adjacent c̀age site’ [18, 20, 100 ± 102]. As such, all the SII and W site

structure within a cage becomes the internal structure of the cage site. A random

walk through Na ± Y reduces to hopping on the tetrahedral lattice of supercages, for

which the mean square displacement after N cage-to-cage jumps is given by:

R2(N ) =

*
NX

i=1

li

2+
=

*
NX

i=1

j li j 2
+

+

*
X

i6= j

li lj

+
(7)

=

*
NX

i=1

a2

+
= Na2 = kta2 = 6Dst ,

where a is the kinetically averaged cage-to-cage distance, and 1/ k h c i is the
kinetically averaged supercage residence time [18]. The third equality results because

jumps are uncorrelated, and the ® nal equality establishes that Ds = 1
6
ka2, identical to

the expression for a simple-cubic lattice. The same result is obtained from a rigorous

analysis of the random walk average using Bernoulli statistics [18], which explicitly

samples the eight possible random jump vectors f li g for a tetrahedral lattice. In fact,
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170 S. M. Auerbach

the same result is obtained for any regular lattice in three dimensions consisting of

only one site type and one jump length scale, e.g., the tetrahedral lattice.
Now we seek analytical formulas for k and a in terms of fundamental rate

coe� cients and jump lengths for the lattice model of benzene in Na ± Y. The mean

cage-to-cage jump distance does have a weak temperature dependence [18], but

nonetheless remains close to the cage-centre to cage-centre distance, ca. 10.8 ÊA [64].

The supercage residence time is more interesting, however. In what follows the W
and SII sites are denoted sites 1 and 2, respectively.

We imagine a trajectory executed by a single benzene molecule through Na ±

Y, hopping among SII and W sites. In the limit of a very long trajectory, mean

residence times at SII and W sites can be used to calculate hopping rate coe� cients

and equilibrium coe� cients in accord with the ergodic hypothesis [103]. The mean
supercage residence time is then given by:

h c i =
T

Ncc
=

1

Ncc

(T1 + T2) =
T1

Ncc

T1 + T2

T1

T ® 1
®

T1

Ncc
1 + Keq(1 ® 2) , (8)

where T = T1 + T2 is the total time of the trajectory, T1 and T2 are the total

residence times at W and SII sites, respectively, and Ncc is the number of cage-to-cage

jumps during the trajectory. The long time limit in equation (8) ensures convergence

of T2/ T1 to the equilibrium coe� cient Keq(1 ® 2) = 2k1® 2 /k2 ® 1, where ki ® j are
fundamental rate coe� cients (cf. table 2), and the factor of two arises because each

W site is shared between two adjacent supercages. The long time limit allows T1 to

be expressed as:

T1 = N‡ T1

N‡ = N‡ h 1 i

T ® 1
®

N‡

k1

=
N‡

6 (k1 ® 1 + k1® 2)
, (9)

where N‡ is the number of visits to W sites, h 1 i is the mean W site residence time,

k1 = 1/ h 1 i is the total rate of leaving the W site, and the factor of six counts
available target sites in the Na ± Y supercage structure. The long trajectory limit

allows one further simpli® cation, namely that Ncc = N‡/ 2. The factor of one half

accounts for randomizing in the W site, which halves the probability to leave the

cage, an assumption that is valid for benzene but not p-xylene in Na ± Y [63].

Putting these results together, we have:

h c i = 2 h 1 i 1 + Keq(1 ® 2) =
1 + 2k1 ® 2/ k2® 1

3 (k1® 1 + k1 ® 2)
, (10)

which represents an exact formula determining cage-to-cage motion in terms of

fundamental hopping rate coe� cients. The formula in equation (10) agrees quanti-

tatively with results from KMC simulations for all temperatures and fundamental
rate coe� cients studied [18, 20]. If we assume that Keq(1 ® 2) 1 because of the

energetic stability of the SII site, the cage-to-cage rate coe� cient reduces to:

k =
3

2
k2 ® 1 1 +

k1 ® 1

k1 ® 2
=

3

2
k2® 1 , (11)

where the last approximation arises from the entropically diminished pre-exponential
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for the W ® W jump. Thus, we have found that the rate-determining step for cage-

to-cage migration, and hence intracrystalline self-diŒusion for benzene in Na ± Y is
the SII ® W jump. Qualitatively similar conclusions can be expected for many other

zeolite ± guest systems, but not for long chain alkanes (> C8) in FAU-type zeolites,

which are dominated by W ® W jumps [104].

The diŒusion theory outlined above in equations (7)± (11) relies on the tetrahedral

topology of Na± Y in particular, and FAU-type zeolites in general. Developing such
a theory for general frameworks remains challenging. Braun and Sholl have recently

developed a Laplace ± Fourier transformation method for calculating exact self-

diŒusion tensors in generalized lattice gas models [105]. These methods in general

involve quite heavy matrix algebra, which can sometimes hide the underlying physical

meaning of the parameters. Jousse et al. have developed an alternative method for
deriving analytical self-diŒusion coe� cients at in® nite dilution for general lattices,

by partitioning the correlated displacement of a tracer into uncorrelated sequences

of jumps [33]. This approach can be used to analyse both geometric correlations

due to the non-symmetric nature of adsorption sites in zeolite pores, and kinetic

correlations arising from insu� cient thermalization of a molecule in its ® nal site.

It is interesting to note that the formulas controlling cage-to-cage motion are
rigorously independent of k2® 2, the SII ® SII rate coe� cient. As such, a measurement

of benzene diŒusion through Na ± Y is totally insensitive to this fundamental rate

parameter, raising the question: what physical situation would be controlled by the

intracage, SII ® SII hopping process? We have addressed this issue by performing

KMC simulations of the orientational correlation function (OCF) which is probed
by NMR relaxation and multidimensional exchange experiments [106], namely C(t)

= h P2(cos t)i , where P2(x) = 1
2
(3x2 1) is the second-degree Legendre polynomial

and t is the angle between benzene’s sixfold axis at time 0 and t. We note that

Klein et al. studied this OCF and others in their molecular dynamics simulations

of benzene, xylenes and nitroaniline in Na ± Y [107]. We have found that benzene
orientational randomization in Na ± Y is controlled exclusively by k2® 2 when the Si:

Al ratio of the zeolite provides full occupancy of Na(II) cations [19]. Because these

Na(II) cations are arranged tetrahedrally in the supercage, as shown in ® gure 2,

benzene can undergo complete orientational randomization by making only SII ® SII

jumps, and by avoiding the more energetically costly SII ® W jump. Thus, we predict

that the NMR spin ± lattice relaxation experiments of Bull et al. [59] on benzene in
Na ± Y (Si:Al = 1.7) observe intracage hopping processes, their data providing a

direct probe of the SII ® SII hopping rate coe� cient. This suggests the comparison

of their 24 kJ mol 1 apparent activation energy to our Ea(SII ® SII) = 35 kJ mol 1,

as shown in table 1.

In several instances self-diŒusion coe� cients for adsorbed benzene are estimated
from relaxation data [59, 108 ± 110] according to Ds

1
6
kBORa2, where a is a likely

jump length chosen from structural data and 1/ kBOR is the measured correlation

time for benzene orientational randomization (BOR). Our present results suggest

that using NMR relaxation data to estimate diŒusivities may be incorrect for

many systems. Therefore, reporting NMR correlation times in terms of diŒusion
coe� cients may lead to inappropriate comparisons with data from, e.g. pulsed ® eld

gradient (PFG) NMR, which directly measures mean square displacements [7, 111].

These results indicate that benzene intracage dynamics in Na ± Y can be probed

by measuring molecular rotation with NMR relaxation; while intercage dynamics

requires a probe of molecular translation, which can be achieved with PFG NMR.
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172 S. M. Auerbach

Figure 7. ln j OCF j for benzene in Na± Y (Si:Al = 3.0) at T = 300 K by KMC. Intracage
motion gives rapid, incomplete decay while cage-to-cage migration gives slower, long
time decay.

One wonders whether a single experiment can measure both intracage and intercage
dynamics. We have addressed this question by modelling BOR in Na ± Y with

only 2 Na(II) cations per supercage, thereby breaking the tetrahedral symmetry

that was present with 4 Na(II) cations per cage [19]. Our KMC-calculated OCF

exhibits biexponential decay as shown in ® gure 7, revealing rapid intracage motion

(SII ® SII) at short times and more sluggish cage-to-cage migration (SII ® W)

at longer times. This prediction has been veri® ed experimentally for benzene in
Ca-Y (Si:Al = 2.0) by the exchange-induced sidebands NMR method [27], hence

providing a single experiment that can probe simultaneously intracage and intercage

motions in strongly adsorbing zeolites.

By modelling BOR in Na ± Y with only 1 Na(II) cation per supercage, we have

found that the resulting OCF is sensitive to the precise distribution of Na(II)
cations [19]. In particular, single exponential decay of the OCF is predicted when

each cage contains exactly 1 Na(II) cation, while biexponential decay arises when

the distribution of Na(II) cations among supercages is not as regular. This is

important because measuring the distribution of Na(II) cations is closely related

to measuring Al distributions in disordered zeolites, which remains challenging to
modern characterization methods [51, 112]. The striking conclusion drawn from

these calculations is that studying BOR in Na ± Y with one quarter Na(II) occupancy

can clearly distinguish between qualitatively diŒerent Al distributions. We therefore

suggest that guest mobility can be used to probe structural aspects of disordered

zeolites; this prediction awaits experimental veri® cation.

Thus far our discussion of dynamics in zeolite has focused (almost [38]) exclu-
sively in the low loading regime, wherein the transport of isolated guest molecules

can be considered. This is the least interesting situation to those who utilize zeo-

lites in chemical applications, because in® nite dilution means slowly accumulating

pro® ts. In section 3, we turn our attention to the statistical mechanical problem of

many-body diŒusion in zeolites.

3. Statistical mechanics of many-body diŒusion in zeolites
Signi® cant eŒort has been devoted to understanding the loading dependence

of diŒusion in zeolites, revealing fascinating physical eŒects such as anomalous

diŒusion [113, 114], correlated cluster dynamics [115], soft core interactions [21,

25], broken symmetry [27] and percolation [116]. Most if not all models of the
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loading dependence of jump diŒusion in zeolites have been carried out with KMC.

Variable time-step KMC simulations are usually carried out as follows: for a given
con® guration, n, of random walkers, a process list of possible hops from occupied

to empty sites is compiled for all molecules. A particular jump from site i to j is

chosen from this list with a probability of ki ® j / ktot(n), where ki ® j is the i to j rate

coe� cient and ktot(n) is the sum of all rate coe� cients in the process list. A hop

is made every KMC step and the system clock is updated with variable time-steps
[95, 96]. The actual KMC time-step is obtained from: t(n) = ln (1 x1)/ ktot(n),

where x1 2 [0,1) is a uniform random number.

The great challenge in implementing this scheme is that the rate coe� cients f ki ® j g
should depend upon the local con® guration of molecules because of guest ± guest

interactions. That is, in compiling the process list of allowed jumps and associated
rate constants on the ¯ y of a KMC simulation, TST or RFCT calculations should be

performed to account for the eŒect of speci® c guest con® gurations on the jump rate

coe� cients. This scheme could become feasible if rate coe� cients for jumps within

recurring con® gurations are stored and e� ciently accessed for subsequent KMC

steps. To date, this àb initio many-body KMC’ approach has not been employed

because of its daunting computational expense. Instead, researchers either ignore
how guest ± guest interactions modify rate coe� cients for site-to-site jumps; or they

use many-body MD at elevated temperatures when guest ± guest interactions cannot

be ignored [77, 78].

A popular approach for modelling many-body diŒusion in zeolites with KMC

is thus the s̀ite blocking model’, where guest ± guest interactions are ignored, except
for exclusion of multiple site occupancy. This model accounts for entropic eŒects of

® nite loadings, but not energetic eŒects. Calculating the process list and available

rate coe� cients becomes particularly simple; one simply sums the available processes

using rates calculated at in® nite dilution [22]. This model is attractive to researchers

in zeolite science [117], because blocking of cage windows and channels by large,
aromatic molecules that form in zeolites, i.e. c̀oking’, is a problem that zeolite

scientists need to understand and eventually eliminate.

Theodorou and Wei used KMC to explore a site blocking model of reaction and

diŒusion with various amounts of coking [118]. Nelson and co-workers developed

similar models, to explore the relationship between the catalytic activity of the

zeolite and its lattice percolation threshold [119, 120]. In a related study, KeŒer
et al. modelled binary mixture transport in zeolites, where one component diŒuses

rapidly while the other component is trapped at sites, e.g. methane and benzene

in Na ± Y [116]. They used KMC to calculate percolation thresholds of the rapid

penetrant as a function of blocker loading and found that these thresholds agree

well with predictions from simpler percolation theories [121]. Coppens et al. used
KMC to calculate the loading dependence of self-diŒusion for a variety of lattices,

for comparison with mean ® eld theories (MFTs) of diŒusion [122]. These theories

usually predict Ds( ) = D0(1 ), where is the fractional occupancy of the lattice

and D0 is the self-diŒusivity at in® nite dilution. Coppens et al. found that the error

incurred by MFT is greatest for lattices with low coordination numbers, such as
silicalite and other MFI-type zeolites. Coppens et al. then reported KMC simulations

showing that by varying the concentrations of weak and strong binding sites (cf. SII

and W sites), their system exhibits most of the loading dependencies of self-diŒusion

reported by K Èarger and Pfeifer [123].

In all these studies, the jump frequencies and reaction rate coe� cients were
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estimated in various ad hoc ways. In contrast, Trout et al. applied electronic structure

methods to calculate thermodynamic parameters for possible elementary reactions
in the decomposition of NOx over Cu± ZSM-5 [124]. Based on these insights,

they developed a KMC model of reaction and diŒusion in this system, seeking the

optimal distribution of isolated reactive Cu centres [125]. This hierarchical approach

to realistic modelling of complex systems presents an attractive avenue for future

research.
Auerbach and co-workers have reported a series of studies modelling the concen-

tration dependence of benzene diŒusion in Na ± X and Na ± Y zeolites [21, 22, 24, 25,

31], because of persistent, qualitative discrepancies between diŒerent experimental

probes of the coverage dependence of self-diŒusion [7]. PFG NMR diŒusivities

decrease monotonically with loading for benzene in Na ± X [111], while tracer zero-
length column (TZLC) data increase monotonically with loading for the same system
[126]. TZLC is a ¯ ow method that measures the desorption rate arising from tracer

exchange in a zero-length chromatographi c column containing zeolite particles. The

TZLC data is converted to self-diŒusivities through a model assuming that tracer

exchange introduces no chemical potential gradient. PFG NMR diŒers from TZLC

in that the NMR experiment directly measures the mean square displacement of
magnetically labelled particles at equilibrium in a zeolite.

Addressing this discrepancy between PFG NMR and TZLC with theory and

simulation may provide better understanding of the microscopic physics essential to

benzene transport in Na ± X and Na± Y. In addition, by varying fundamental energy

scales, our model for these systems exhibits four of the ® ve loading dependencies
of self-diŒusion reported by K Èarger and Pfeifer [123], in analogy with the study

of Coppens et al. [127]. However, because the critical temperature of bulk benzene

is over 560 K, attractive guest± guest interactions are signi® cant and should not

be ignored. Modelling such systems remains challenging because of the coupling

between rare event dynamics and strong guest ± guest interactions [26, 128], i.e. the
competition between adhesive and cohesive forces. In what follows, we outline

our recently developed model for determining how guest ± guest interactions modify

activation energies of site-to-site jumps [25, 31]. Based on this model, our calculations

for benzene in Na ± X described below give excellent qualitative agreement with PFG

NMR diŒusivities, and give qualitative disagreement with TZLC data.

It should not be surprising that this three-dimensional lattice model of benzene
in Na ± X with attractive interactions supports phase transitions from low to high

sorbate density, analogous to vapour ± liquid equilibrium of bulk benzene [28]. We

examine this phase transition below, using grand canonical lattice Monte Carlo and

thermodynamic integration to explore the nature of subcritical and supercritical

phases. We also explore the impact of this phase transition on diŒusion in zeolites.
In general, we ® nd that understanding the thermodynamics of con® ned ¯ uids can

be crucial for elucidating the transport properties of molecules in zeolites [129, 130].

3.1. Supercritical diŒusion: theory and simulation

Thus far we have discussed the dynamics and diŒusion of benzene in Na ± Y;
we now turn our attention to benzene in Na ± X. As discussed in the Introduction,

Na ± X is a FAU-type zeolite with Si:Al ratios in the range 1.0± 1.5, and hence with

a higher density of Na cations than that in Na ± Y. Locating benzene adsorption

sites in Na ± X is more di� cult because of these additional Na cations, which lie in

or near the 12-ring window separating adjacent supercages [52, 131]. The powder
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neutron diŒraction study of Vitale et al. [52] found benzene in Na± X only at

SII, but located only half the adsorbed benzene, suggesting that low-symmetry
benzene sites near the 12-ring window are likely. These binding sites would act

as intermediates for cage-to-cage motion, in analogy with Na ± Y W sites. As such,

we denote benzene sites near Na cations in 12-ring windows as Na ± X W sites,

although strictly speaking their geometries and energies diŒer from those of Na ± Y

W sites. In particular, we expect that Na ± X W sites are stabilized relative to those
in Na ± Y, because of these additional Na cations in Na ± X. The lattice of benzene

binding sites in Na± X and Na ± Y thus contains four tetrahedrally arranged SII sites

and four tetrahedrally arranged, doubly shared W sites per supercage. Saturation

coverages of ca. 6 molecules per cage are found for benzene in Na ± X and Na ± Y
[69], corresponding to occupation of all SII and W sites. In the equations that follow,
the W and SII sites are denoted sites 1 and 2, respectively.

3.1.1. Parabolic jump model

A lattice gas model is used to describe the thermodynamics of these systems,

limiting the range of guest ± guest interactions to nearest neighbours. The Hamiltonian

for a lattice with M1 W sites and M2 = 2M1 = M M1 SII sites, takes the form:

H(s, ) =

M1X

i=1

sif 1 +
1

2

M1X

i,j =1

siJ
11
ij sj +

M1X

i=1

M2X

j =1

siJ
12
ij j +

1

2

M2X

i,j =1

iJ
22
ij j +

M2X

i=1

if 2 , (12)

where s and are site occupation numbers for W and SII sites, respectively,

and f 1 and f 2 are their respective site free energies given by f i = e i T si. In

equation (12), J11
ij , J12

ij and J22
ij are the nearest neighbour W ± W, W ± SII and SII ± SII

interactions, respectively, i.e. J11
ij = J11 for nearest neighbour W sites and zero

otherwise, and so on for J12
ij and J22

ij . These parameters are obtained from the
second virial coe� cient of the heat of adsorption [69, 132], yielding ca. J = J12 =

J22 = 4 kJ mol 1. However, to determine qualitatively how guest ± guest interactions

control the loading dependence of the self-diŒusivity, we vary J12 and J22 over the

range 0 to 10 kJ mol 1.

The site binding energies are taken as e 2 = 78 kJ mol 1 and e 1 = 63 kJ mol 1

for benzene in Na ± X, and e 2 = 78 kJ mol 1 and e 1 = 53 kJ mol 1 for benzene
in Na ± Y [25, 31]. Site 2 is chosen for the zero of entropy in both Na± X and

Na ± Y, giving s2 0. Given the data in table 2, the entropy for site 1 is therefore

s1 = kB ln (7.1) = 1.96kB. The results we ® nd below are particularly sensitive to the

parameter (f 1 f 2)/ j J j , of which f 1 is the most poorly known. This fact underscores

the importance of obtaining more precise structural information for the Na ± X W site,
perhaps by synthesizing larger Na± X crystals to facilitate single-crystal diŒraction

studies [131].

We may be tempted to use the rate data in table 2 to parametrize our model

at in® nite dilution. However, since the diŒusivity is especially sensitive to activation

energies, we must recognize that our calculated barriers may not be the most

accurate of all available data. We choose instead to extract activation energies from
experimental data for benzene in Na± X [17, 111] and Na ± Y [17, 66], yielding the

barriers given in table 3. We do utilize the Arrhenius pre-exponential factors in

table 2 for benzene in Na ± Y, and assume that they also hold for benzene in Na± X.

The attractive guest ± guest interactions introduce new complexities into the ki-

netics of the diŒusion problem, as discussed above. An extreme case of this was
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176 S. M. Auerbach

Table 3. Best available activation energies (kJ mol 1) for benzene jumps at in® nite dilution in
Na ± X and Na± Y.

Na± Y Na± X

SII ® SII 25 15
SII ® W 38 25
W ® SII 13 10
W ® W 13 10

recently reported by Sholl and Fichthorn [115], wherein strong guest ± guest interac-

tions generated transport dominated by correlated cluster dynamics instead of single

molecule jumps. While such correlated clusters are not likely to dominate benzene
diŒusion in FAU-type zeolites, guest± guest interactions will modify jump activation

energies for site-to-site rate coe� cients, depending upon speci® c con® gurations of

neighbouring adsorbates. In order to account for this, we have generalized a model

that relates binding energies to transition state energies used previously by Hood et

al. [133], and also used by us for predicting mobilities in zeolites [17]. To implement
this approach, it is convenient to write the lattice gas Hamiltonian in the following

form:

H(n) =

MX

i=1

ni
Äf i +

1

2

MX

i,j =1

ni
ÄJij nj , (13)

where n = (n1, n2, , nM ) are site occupation numbers listing a con® guration of the

system and Äf i = Äe i T Äsi is the free energy for binding in site i. In equation (13), ÄJij

is the nearest neighbour interaction between sites i and j , i.e. ÄJij = 0 if sites i and j
are not nearest neighbours.

We assume that the minimum energy hopping path connecting adjacent sorption

sites is characterized by intersecting parabolas, as shown in ® gure 8, with the site-to-

site transition state located at the intersection point. For a jump from site i to site j ,

with i, j = 1, . . . ,M, the hopping activation energy including guest ± guest interactions

is given by:

Ea(i, j ) = E(0)
a (i, j ) + Eij

Á
1

2
+

E(0)
ij

kij a
2
ij

!
+ E2

ij

Á
1

2kij a
2
ij

!
, (14)

where E(0)
a (i, j ) is the activation energy without guest ± guest interactions, i.e. the

in® nite dilution activation energy, and aij is the jump distance. Eij is the shift in

the energy diŒerence between sites i and j resulting from guest ± guest interactions,
and is given by Eij = Eij E(0)

ij = (Ej Ei) ( Äe j Äe i), where Ek = Äe k +
PM

l=1
ÄJklnl

for a particular lattice con® guration n. This method allows the rapid estimation of

con® guration dependent barriers during a KMC simulation, knowing only in® nite

dilution barriers and the nearest neighbour interactions de® ned above. The parabolic

jump model is most accurate when the spatial paths of jumping molecules are not
drastically changed by guest ± guest interactions, although the energies can change

as shown in ® gure 8. While other lattice models of diŒusion in zeolites have been

proposed that account for attractive guest ± guest interactions [26, 128], the parabolic

jump model has the virtue of being amenable to analytical solution, as discussed

next.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Jump dynamics, diŒusion and phase equilibrium in nanopores 177

Figure 8. Site-to-site jump activation energies perturbed by guest ± guest interactions,
approximated with parabolic jump model.

3.1.2. Mean ® eld theory

Mean ® eld theory (MFT) provides a powerful means of reducing the complex-
ity of many-body structure and dynamics to the simplicity of eŒective one-body

properties [39]. MFT averages over local ¯ uctuations in the instantaneous energy of

each adsorption site, thereby neglecting correlations that extend beyond the length

scale separating sites. Although MFT can give numerical error for lattices with

low coordination [122], the theory remains qualitatively reliable except near critical
points, where cooperativity in ¯ uctuations extends over large distances. Thus, we

view MFT as a useful launching point for an analytical theory of many-body diŒu-

sion in zeolites. We note that a general theoretical method called dynamical MFT

has recently been reported [134], which is reminiscent of our approach outlined

below.

We have shown that a mean ® eld analysis applied to cage-to-cage motion through

Na ± X and Na ± Y yields Ds( ) = 1
6
k a2 , where a is the mean intercage jump length

and 1/k is the mean cage residence time [21]. The mean cage-to-cage jump distance
has a very weak temperature and loading dependence [24], remaining in the range

11 ± 13 ÊA as dictated by the Na± X supercage structure. We have also shown [21] that

the cage-to-cage rate coe� cient, k , is given by k = k1P1, where P1 is the probability

of occupying a W site, k1 is the total rate of leaving a W site and is the transmission

coe� cient for cage-to-cage motion. This theory provides a picture of cage-to-cage
motion involving transition state theory (k1P1) with dynamical corrections ( ), which

is valid for both weak and relatively strong guest ± guest interactions. For consistency

with our mean ® eld analysis, we assume that = 1/ 2 for all loadings. We also expect

that P1 will increase with loading and that k1 will decrease with loading. Below we

outline the derivation of analytical expressions for k1 and P1, to elucidate how the
balance between k1 and P1 controls the loading dependence of self-diŒusion [25, 31].

In the Na ± X and Na ± Y lattices, with twice as many SII sites as W sites, P1 is
given by 1/ (1 + 2 2/ 1), where 1 and 2 are the fractional coverages on W and

SII sites, respectively. We determine 1 and 2 in the grand canonical ensemble,

according to:

1 = h si i MF =
exp f [(f 1 ) + 6 (J11 1 + J12 2)] g

1 + exp f [(f 1 ) + 6 (J11 1 + J12 2)] g
, (15)

2 = h i i MF =
exp f [(f 2 ) + 3 (J22 2 + J12 1)] g

1 + exp f [(f 2 ) + 3 (J22 2 + J12 1)] g
, (16)
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178 S. M. Auerbach

Figure 9. Comparison between KMC and MFT for benzene in Na± X at three diŒerent
temperatures, showing that three diŒusion isotherm types emerge.

where is the chemical potential and = (kBT ) 1. The factors of 3 and 6 in
equations (15) and (16) arise from the site connectivity among SII and W sites. The

total fractional coverage is then given by = ( 1 + 2 2)/ 3.

The MFT expression for the loading dependence of k1, the total rate of leaving

a W site, is given by:

k1 = 6(1 1)h k1 ® 1 i + 6(1 2)h k1® 2 i , (17)

where 6(1 j ) counts available target sites and h k1 ® j i averages over ¯ uctuating

rate coe� cients for jumps leaving W sites. As described above, we model the

¯ uctuating activation energies according to the parabolic jump model. Assuming

that ¯ uctuations in the pre-exponentials can be ignored and that activation energies
are Gaussian distributed, we have that:

h ki ® j i = i ® j h exp [ Ea(i, j )] i
= i ® j exp [ h Ea(i, j )i ] exp [ 2 2

a(i, j )/ 2] , (18)

where 2
a(i, j ) is the variance of the Gaussian distribution of activation energies,

i.e. 2
a(i, j ) = h Ea(i, j ) h Ea(i, j )i 2 i = h [Ea(i, j )]2 i h Ea(i, j )i 2. We see from equa-

tion (14) that applying mean ® eld theory requires averages of Ek
ij up to k = 4. We

only consider terms up to second order, since higher order terms will typically be

small.

3.1.3. Comparison with simulation and experiment

To test the accuracy of this MFT, we used KMC and the parabolic barrier

model to calculate benzene mean square displacements in Na ± X [31]. Figure 9
shows that three d̀iŒusion isotherm’ types emerge. We see in ® gure 9 excellent

qualitative agreement between theory (lines) and simulation (dots). MFT consis-

tently overestimates simulated diŒusivities because theory neglects correlations that

increase the probability of the particle returning to its original position. These diŒu-

sion isotherm types diŒer in the coverage that gives the maximum diŒusivity: max

= 0 is de® ned as type I, max 2 (0,0.5] is type II, and max 2 (0.5,1] is type III.

De® ning the parameter c (f 1 f 2)/ kBT , we ® nd that type I typically arises from

c < 1, type II from c 1 and type III from c > 1. This suggests that when the

SII and W sites are nearly degenerate, i.e. c 9 1, the coverage dependence of P1

is weak, and hence k and Ds( ) are dominated by the decreasing coverage depen-
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Figure 10. DiŒusion isotherm for benzene in Na± X at 468 K, by PFG NMR (scaled by 5),
TZLC (scaled by 100) and by KMC simulations.

dence of k1. Alternatively, when c 0 1, the enhancement of P1 at higher loadings

dominates the diŒusivity until 1 2, at which point the decreasing k1 begins

to dominate [127]. We also obtain excellent qualitative agreement between theory

and simulation for the temperature dependence of diŒusion for all cases studied
[31].

Figure 10 shows KMC calculated diŒusion isotherms for benzene in Na ± X at
T = 393 K and 468 K, compared to PFG NMR data [111] at the same temperatures

(uniformly scaled by a factor of 5) and TZLC diŒusivities [126] at T = 468 K

(uniformly scaled by a factor of 100). The experimental data were scaled to facilitate

comparison with the loading dependence predicted by simulation, which itself was

not ® tted to either experimental result. Figure 10 shows that our model is in excellent
qualitative agreement with the PFG NMR results, and in qualitative disagreement

with TZLC. Other experimental methods yield results that also agree broadly with

these PFG NMR diŒusivities [135 ± 137]. Our model overestimates PFG NMR

diŒusivities at high loadings because the lattice model allows 6 molecules per cage,

while the observed saturation coverage is 5.4 molecules per cage.

One way to view the discrepancy in ® gure 10, apart from the absolute magnitudes,
is that both simulation and PFG NMR are consistent with a low coverage of

maximum diŒusivity, max , while TZLC exhibits a large max . While it is not obvious

why the TZLC results diŒer so markedly from PFG NMR data and from our

simulated diŒusivities, our results in [31] do suggest future experiments to test the

reliability of TZLC. Indeed, we found in [31] that max decreases with increasing
temperature, as all sites become more degenerate. As such, high temperature TZLC

diŒusion isotherms should be measured, to con® rm consistency with our rather

plausible prediction regarding the temperature dependence of max .

Buoyed by the apparent success of our transport theory, we now ask the question:

can this system undergo a phase transition analogous to vapour ± liquid equilibrium of

bulk benzene, driven by the attractive nearest neighbour interactions in our model?
Clearly we cannot distinguish between v̀apour’ and l̀iquid’ inside an individual

zeolite cage, but eŒective cage-to-cage attractions may lead to cooperativity on

longer length scales. Traditionally, the ® elds of transport and adsorption in zeolites

have enjoyed little overlap [129, 130]. In the sections 3.2 and 3.3, we attempt to

connect these two ® elds for benzene in Na ± X and Na ± Y.
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3.2. Vapour ± liquid equilibrium

The thermodynamic properties of con® ned ¯ uids play a central role in separations
and reactions that take place within porous materials [138, 139]. Of particular interest

are hysteresis loops and precipitous jumps in adsorption isotherms, since these are

often associated with vapour ± liquid transitions of the con® ned ¯ uid. Although

there is a vast literature on such transitions in mesoporous materials, there are

very few reports of phase transitions in microporous solids such as zeolites. This
is presumably because con® nement into such small cavities (< 20 ÊA) reduces the

vapour ± liquid critical temperature to extremely low values.

Nevertheless, there have been occasional reports of possible phase transitions

in such systems. For example, hysteresis loops have been observed at 77 K for

methane in AlPO4-5 [140], a one-dimensional channel zeolite. Since phase transitions
in one-dimensional systems are theoretically forbidden [39], Radhakrishnan and

Gubbins [141] and Maris et al. [142] simulated this system to determine whether

interactions among methanes in adjacent channels could account for the observed

phase transition. They found critical temperatures of 52 K and 33 K, respectively,

arising from diŒerent levels of detail in their models of AlPO4-5. For benzene in Na ±

Y, a multiple-quantum proton NMR study detected a continuous network of coupled
proton spins [143], suggesting the importance of interactions among molecules in

adjacent cages. We have used grand canonical Monte Carlo (GCMC) [46] and

thermodynamic integration [94, 144, 145] to demonstrate that these cooperative

interactions can lead to vapour ± liquid transitions for benzene in Na ± X [28].

3.2.1. Adsorption isotherms and coexistence curves

In GCMC simulations, the chemical potential , volume V and temperature

T are ® xed, while the number of adsorbed molecules is allowed to ¯ uctuate. We

have performed Metropolis GCMC calculations on a simulation cell that consists

of eight Na ± X unit cells, containing 128 W sites and 256 SII sites. The lattice
model is parametrized as discussed in section 3.1, using J = J12 = J22 = 0.04 eV =

3.86 kJ mol 1. The average fractional occupancy is calculated after (1.0 2.5) 107

Monte Carlo (MC) steps, with an initial equilibration period of 106 MC steps.

The GCMC isotherms are calculated over a grid of = ( e 2)/ j J j . In the

deep subcritical regime we observe hysteresis between the GCMC calculations

performed by adsorbing molecules onto an empty lattice, namely the adsorption
or vapour branch; and desorbing molecules from a fully occupied lattice, namely

the desorption or liquid branch. For higher temperatures in the subcritical region,

greater than 300 K (T = kBT / j J j = 0.65), the hysteresis region becomes too narrow

to be recovered from GCMC adsorption and desorption calculations. The liquid

and vapour branches for these temperatures are obtained by averaging separately
the vapour and liquid densities that arise from a single GCMC run. The liquid and

vapour branches are used for performing thermodynamic integration [28, 94, 144,

145], which leads to the vapour ± liquid coexistence curve.

It is not possible to approach the critical point very closely using the Metropolis

algorithm, because this algorithm does not e� ciently produce the macroscopic
¯ uctuations that characterize the critical point. More sophisticated algorithms have

been developed that create and destroy large clusters, rather than individual particles,

thereby simulating large density ¯ uctuations e� ciently [146 ± 148]. In order to obtain

an estimate of the critical point from Metropolis simulations, we ® tted the coexistence

points to the Ising scaling law for the density diŒerence between the liquid and
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Figure 11. GCMC adsorption calculation for benzene in Na± X, showing hysteresis at
T = 340 K (T = 0.73).

Figure 12. Simulated coexistence envelope for benzene in Na± X, giving Tc = 370 20 K
(Tc = 0.79 0.04).

vapour phases for three-dimensional systems, i.e. (Tc T ) = A( l g)3, together

with the law of rectilinear diameters [141, 149]. We also estimate the critical point

with MFT, using equations (15) and (16) to calculate adsorption isotherms.

We have performed GCMC adsorption and desorption calculations for benzene
in Na ± X over the temperature range 50 ± 700 K. For T > 400 K (T = 0.86),

the isotherms are continuous and reversible with respect to the adsorption and

desorption branches. However, for lower temperatures, regions of hysteresis are

observed because of metastabilty in the adsorbed state. In ® gure 11, we show the

hysteresis region that arises at T = 340 K (T = 0.73). This hysteresis region

is extremely narrow, with a width of only 0.02 j J j . This phase transition occurs
because of attractive interactions between benzene molecules in adjacent cages.

These interactions are mediated by benzene molecules in W sites, which are shared

between adjacent supercages, and hence are able to build a continuous network of

coupled benzenes.

The coexistence envelope for benzene in Na ± X obtained from thermodynamic
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integration is shown in ® gure 12. The asymmetry in the coexistence curve arises from

the presence of two diŒerent types of sites and entropies in our model. The critical
point we estimate for benzene in Na ± X is Tc = 370 20 K (Tc = 0.79 0.04) and

c = 0.45 0.05. Applying the same analysis to adsorption isotherms obtained with

MFT, we obtain a mean ® eld critical temperature of 691 K (Tc (MFT)= 1.48). We

thus ® nd that MFT greatly over estimates the critical temperature for this lattice

model, hence requiring the GCMC simulations.
It is interesting to compare the reduced critical temperature found above to

those from other lattices, in order to understand what aspects of our lattice model

for benzene in Na ± X determine its critical point. In particular, each actual site

interacts with 6 nearest neighbours, while the overall tetrahedral symmetry of FAU-

type zeolites provides 4 direct cage-to-cage interactions. It is not obvious, then,
whether the critical point for benzene in Na± X should be characteristic of lattices

with 4-fold or 6-fold coordination. Tc for the 2D square lattice is 0.58, while that

for the 3D cubic lattice is 1.0 [39]. Our system, with Tc = 0.79, happens to fall

right in between the results for these two lattices, suggesting that the interplay

between local coordination and cage-to-cage couplings controls the critical point for

benzene in Na ± X. This analysis also suggests why MFT, which is only sensitive to
local coordination as shown in equations (15) and (16), so grossly overestimates the

critical temperature.

The existence of this phase transition is sensitive to the value of the parameter

(f 1 f 2)/ j J j . If exceeds a certain value, the critical temperature vanishes along

with the phase transition. Preliminary calculations show that when 0 4, which
is the case for benzene in Na ± Y, the phase transition is completely suppressed.

Indeed, without entropy favouring benzene W sites, the phase transition would also

be suppressed in our model of benzene in Na ± X. This sensitivity underscores yet

again the importance of obtaining more precise structural information for the Na ± X

W site, to quantify f 1 more accurately. Although hysteresis has been observed in
adsorption isotherms measured for benzene in Na ± X [150], this observation must

arise from a structural transformation of the zeolite rather than from cooperative

interactions among guests, because the measured densities in the adsorption branch

exceed those in the desorption branch. As such, our predictions for benzene in Na ± X

await experimental con® rmation.

Our analysis above suggests that this phase transition should be even more
pronounced for benzene in Si ± Y, where zeolite ± benzene interactions are weaker

than they are in Na ± X. Performing oŒ-lattice GCMC simulations on benzene in

Si ± Y thus constitutes an important avenue for future research. These calculations

will likely require con® gurational-bias Monte Carlo [151, 152] to facilitate inserting

anisotropic adsorbates at high density.
Based on these thermodynamic studies, we now understand that the diŒusion

isotherms compared with experiment in ® gure 10 represent supercritical lattice gas

diŒusionÐ hence the name of section 3.1Ð because these simulations were performed

at temperatures above Tc = 370 K. It is irresistible to wonder how transport in

zeolites becomes modi® ed when considering subcritical lattice gas diŒusion.

3.3. Subcritical diŒusion: droplet formation

The comprehensive loading dependence of diŒusion in these systems is controlled

by the degree of degeneracy between SII and W sites, which depends upon three

energy scales: f 1 f 2, J and kBT . As such, two unitless parameters are required to
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Figure 13. DiŒusion isotherms for benzene in Na± X by KMC-MSD and KMC-MFA (see
text) at 468 K for various values of J, showing the signature of subcritical diŒusion
for J = 0.07 eV.

describe the Corresponding States of benzene in Na± X and Na ± Y. It is convenient

now to utilize the parameter T = kBT / j J j . This Corresponding States parameter

suggests that benzene becomes a subcritical ¯ uid in Na± X by either decreasing T
or increasing j J j . For computational convenience we prefer to increase j J j , which

allows us to compare diŒusion isotherms at ® xed temperature.

Figure 13 shows KMC calculated diŒusion isotherms for benzene in Na ± X

at 468 K, using various values of the coupling parameter J [31]. These diŒusion
isotherms were calculated from mean square displacements (KMC-MSD), and also

were estimated from the mean ® eld approximation (KMC-MFA): Ds( ) = (1/ 6)k a2,

where k and a are determined from KMC simulations. These two methods agree

semi-quantitativel y as shown in ® gure 13, which simpli® es KMC simulations because

k and a are time-independent quantities, in contrast to mean square displacements
whose time dependence must be calculated. The thermodynamic analysis above

indicates that the diŒusion isotherms in ® gure 13 using j J j ø 0.04 eV represent

supercritical diŒusion. The loading dependence exhibited by these isotherms is

weakly type II, and qualitatively demonstrates the monotonically decreasing (1 )

form predicted by simple MFT. In related calculations, we ® nd a type III diŒusion

isotherm for supercritical benzene in Na± Y, which arises because W sites in Na ± Y
are relatively unstable at most temperatures. In general, we ® nd that increasing

temperature and/or making J more negative, while keeping all other parameters

constant, changes isotherms according to type III ® II ® I.

On the other hand, when J = 0.07 eV we ® nd an interesting loading dependence,

involving a sharp decrease for small loadings, followed by a broad region of constant

diŒusivity for higher loadings. If we assume for the moment that Tc µ j J j , then

Tc 650 K in Na± X with J = 0.07 eV. Since the self-diŒusivities in ® gure 13

were calculated at 468 K, the simulations using J = 0.07 eV represent subcritical
diŒusion. Since canonical KMC simulations ® x the loading, a subcritical system at,

e.g., = 0.5 will involve a ¯ uctuating liquid-like cluster of ® lled sites occupying

approximately half the lattice, while a supercritical system at the same loading

will be more evenly dispersed throughout the lattice, as shown schematically in

® gure 14. This insight explains our intriguing simulation results, and may help
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184 S. M. Auerbach

Figure 14. Schematic of cluster formation in subcritical nanoporous systems, where the
subcritical droplet spans many Na ± X cages that are full of benzene.

elucidate experimental ® ndings as well. In particular, cluster formation in subcritical

systems suggests a diŒusion mechanism involving èvaporation’ of particles from

clusters. Increasing the loading in subcritical systems increases mean cluster sizes
and smoothes cluster interfaces. Once these interfaces become su� ciently smooth,

we can assume that evaporation dynamics remain essentially unchanged by further

increases in loading. As such, we expect the subcritical diŒusivity to obtain its full

loading value at low loadings, and then remain roughly constant up to full loading,

as shown for Na ± X in ® gure 13.

This subcritical type of loading dependence, involving broad regions of constant
diŒusivity, is surprising because isotherms for interacting adsorbates are expected

to decrease with loading when site blocking dominates. It is interesting to note

that an isotherm type has been reported for strongly associating adsorbates such

as water and ammonia [123], denoted by K Èarger and Pfeifer as type III (not to

be confused with our type III), involving an initial increase followed by a broad
region of constant diŒusivity. The present analysis suggests that K Èarger and Pfeifer’s

type III diŒusion isotherm may be characteristic of a cluster-forming, subcritical

adsorbed phase.

Thus far we have focused on equilibrium transport processes such as self-diŒusion

and orientational randomization. We now turn our attention to modelling non-

equilibrium diŒusion in nanopores, which is the process most relevant to industrial
applications.

4. Non-equilibrium diŒusion in nanopores

Two theoretical formulations exist for modelling non-equilibrium diŒusion, here-

after denoted t̀ransport diŒusion’, which ultimately arises from a chemical potential

gradient or similar driving force [7, 8]. The formulation developed by Fick involves
linear response theory relating macroscopic particle ¯ ows to concentration gradients,

according to J = DÑ , where J is the net particle ¯ ux through a surface S , D

is the transport diŒusivity and Ñ is the local concentration gradient perpendicular

to the surface S [39]. While this perspective is conceptually simple, it breaks down

qualitatively in remarkably simple cases, such as a closed system consisting of a
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liquid in contact with its equilibrium vapour. In this case, Fick’s law would predict

a non-zero macroscopic ¯ ux; none exists because the chemical potential gradient
vanishes at equilibrium. Fick’s law can be generalized to treat very simple multi-

component systems [29, 30, 153 ± 156], such as co-diŒusion and counter-diŒusion of

identical, tagged particles.

Despite these shortcomings, Fick’s law remains the most natural formulation
for transport diŒusion through Langmuirian lattice models of zeolite ± guest systems.

These involve regular lattices of identical sorption sites where guest ± guest inter-

actions are ignored, except for exclusion of multiple site occupancy. Such model

systems exhibit Langmuir adsorption isotherms, and give single-component trans-

port diŒusivities that are independent of loading [157]. Moreover, for such systems
the equation J = DÑ is exact for all concentration gradients, i.e. all higher or-

der terms beyond linear response theory cancel. We exploit this fact below in our

lattice model studies of counter-permeation through anisotropic [29] and single-® le

nanoporous membranes [30].

The other formulation of transport diŒusion was developed independently by

Maxwell and Stefan, and begins with the equation J = LÑ , where L is the so-

called Onsager coe� cient and Ñ is a local chemical potential gradient at the surface

S [7, 158]. To make contact with other diŒusion theories, the Onsager coe� cient

is written in terms of the so-called corrected diŒusivity, Dc, according to L =

Dc/ kBT , where is the local intracrystalline loading at the surface S . Clearly this
formulation does not suŒer from the qualitative shortcomings of Fick’s law, and can

be properly generalized for complex multicomponent systems [159]. The corrected

diŒusivity depends upon loading for Langmuirian systems, where jump diŒusion

holds, but depends very weakly on loading for more ¯ uid-like diŒusion systems
[158], making the Maxwell± Stefan formulation more natural for weakly binding
zeolite ± guest systems. The relationship between the Fickian and Maxwell± Stefan

diŒusivities is often called the Darken equation, given by [7]:

D = Dc
¶ ln f

¶ ln T

, (19)

where f is the fugacity of the external ¯ uid phase. Other versions of the Darken
equation often appear, e.g. where Dc is replaced with Ds, the self-diŒusivity. We ® nd

for Langmuirian systems that this replacement is tantamount to mean ® eld theory
[29].

Many researchers prefer to report their transport data in terms of the corrected

diŒusivity because it is completely determined by dynamics, in contrast to the
Fickian diŒusivity which is also in¯ uenced by thermodynamics, as evidenced by the

adsorption factor in equation (19). Indeed, a correlation function analysis of the

corrected diŒusivity yields [36, 158, 160]:

Dc =
1

3N

NX

i,j =1

Z 1

0

dt h vi(0) vj (t)i (20)

=
1

3N

NX

i,j =1

lim
t® 1

1

2t
h ri(t) rj (t)i , (21)

where N is the number of particles in the system and vi(t) and ri(t) = ri(t) ri(0)
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186 S. M. Auerbach

are the velocity and displacement of the ith particle at time t, respectively. Both

equations (20) and (21) can be used for ¯ uid-like diŒusion, e.g. for methane in
silicalite, while only equation (21) is convenient for jump diŒusion, e.g. for benzene

in Na ± Y, because velocity correlations typically decay well before rare jump events

occur. The interparticle correlation functions in equations (20) and (21) manifest the

collective nature of non-equilibrium diŒusion, which is why this type of transport is

often called collective diŒusion. The correlation functions in equations (20) and (21)
also suggest that non-equilibrium diŒusion can be modelled with equilibrium sim-

ulations using the ¯ uctuation ± dissipation theorem [39], although the poor statistics

of such simulations make them very challenging. An interesting avenue for future

research involves the use of equation (21) with realistic lattice models [161], to

develop a feasible equilibrium approach for modelling non-equilibrium diŒusion in
zeolites.

In the limit of low loading, interparticle correlations vanish and equations (20)

and (21) become:

Dc
® 0
®

1

3N

NX

i=1

Z 1

0

dt h vi(0) vi(t)i (22)

=
1

3N

NX

i=1

lim
t ® 1

1

2t
h [ ri(t)]

2 i = Ds( = 0) = D0 , (23)

which is precisely the self-diŒusivity at in® nite dilution. This analysis con® rms

that the corrected diŒusivity provides the proper generalization of self-diŒusion

for collective transport phenomena, while the Fickian diŒusivity combines both

transport and thermodynamic properties.

While many interesting phenomenological simulations have been published on

transport diŒusion through nanopores, relatively few atomistic calculations have

been carried out [162]. An important study was reported in 1993 by Maginn et al.,
developing non-equilibrium molecular dynamics calculations of methane transport

diŒusion through silicalite [158]. They applied gradient relaxation MD as well

as colour ® eld MD, simulating the equilibration of a macroscopic concentration

gradient and the steady-state ¯ ow driven by an external ® eld, respectively. They

found indeed that the corrected diŒusivity depends very weakly upon loading for

this ¯ uid-like system, and that the colour ® eld MD technique provides a more
reliable method for simulating the linear response regime.

With the availability of high performance parallel supercomputers, there has

been great interest in developing rigorous, grand canonical MD methods for mod-
elling non-equilibrium transport through nanopores [163 ± 165]. Despite the progress

that has been made, these MD methods still suŒer from the well known time

scale problems discussed above for systems exhibiting rare event dynamics. As

such, an important avenue for continued research is the development of realistic

and illustrative lattice models for studying non-equilibrium diŒusion in nanopores,
especially because of recent progress in synthesizing continuous, oriented zeolite

membranes [166 ± 169]. These systems present new challenges to permeation theo-

ries because the ® nite extent of membranes in the transmembrane direction can

produce interesting transport anomalies, as discussed below in sections 4.1 and

sections 4.2.
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Figure 15. Schematic of a TCP simulation, with identical but diŒerently labelled particles.

4.1. Anisotropy in open systems

DiŒusion anisotropy in zeolites results from molecular jump rates that depend

upon direction [7, 82]. DiŒusion anisotropy takes on special importance for perme-
ation through oriented zeolite membranes, because the anisotropy introduced by a

transmembrane concentration gradient can couple with the anisotropy inherent in

a zeolite ± guest system, yielding novel transport properties. For example, consider

a 2D square Langmuirian lattice model. In this case, anisotropy leads to single-

® le transport through the membrane at one extreme, and single-® le transport in
the plane of the membrane in the other extreme. Although single-® le motion at

® nite loadings exhibits normal concentration-independent , single-component trans-

port diŒusion, single-® le motion gives rise to anomalous self-diŒusion, wherein the

mean square displacement (MSD) is proportional at long times to t1/ 2 rather than

to t [113, 114, 170 ± 172]. It is therefore of interest to investigate the signature of such
anomalous self-diŒusion in a membrane transport system. However, since the long

time limit of the MSD may not be accessible in a membrane of ® nite thickness,

and since the natural observable in a permeation measurement is steady-state ¯ ux

rather than the MSD, we need to imagine a convenient experiment that can probe

this anomalous diŒusion. Indeed, it has been shown that two-component, equimo-

lar counter-permeation of identical, labelled species yields transport identical to
self-diŒusion [155]. Such a situation, hereafter denoted t̀racer counter-permeation ’

(TCP) [29], is closely related to the tracer zero-length column experiment developed

by Ruthven and co-workers [126].

4.1.1. Tracer counter-permeatio n

The TCP simulation for a 2D Langmuirian lattice model is shown in ® gure 15

above. We de® ne the anisotropy parameter, , according to = ky / kx, where kx

and ky are the elementary jump rates in the transmembrane and in-plane directions,
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188 S. M. Auerbach

respectively. = 1 corresponds to an isotropic lattice, > 1 corresponds to a

membrane where the jump rate in the transmembrane direction is slower and < 1
corresponds a membrane where diŒusion is faster in the transmembrane direction.

The limiting case = 0 corresponds to single-® le diŒusion. For example, the < 1

case models p-xylene permeation through a silicalite membrane oriented along the

b axis, i.e. the straight channels, while > 1 corresponds to the same system except

oriented along the a axis or c axis [166], i.e. the zig-zag or c̀orkscrew’ channels,
respectively. In ® gure 15, the parameters A, B and kd control adsorption and

desorption kinetics. We have parametrized this model based on data reported for

cyclohexane in silicalite by Magalh Äaes et al. [173], as detailed in [29].

For such a system, it is well established that the scalar form of Fick’s law should

be replaced by a vector equation of the form [29, 30, 153 ± 156]:

JA

JB
=

DAA DAB

DBA DBB

Ñ A

Ñ B
, (24)

where A and B are the local loadings of components A and B, respectively. When
species A and B have identical diŒusive properties, the matrix in equation (24) is

asymmetric, and has two eigenvectors that correspond to co-diŒusion and counter-

diŒusion, the latter being relevant to TCP. The apparent diŒusivities for counter-

diŒusion are given by:

D+
A = D+

B = D0(1 T)f ( T) = Ds( T) , (25)

where T = A + B is the total loading, which is constant throughout the lattice
in TCP. f ( T) is the so-called correlation factor, a number between zero and one

that measures the extent to which correlations diminish the self-diŒusivity from the

MFT estimate (cf. the transmission coe� cient and TST in section 2). Equation (25)

shows that TCP can be used to model self-diŒusion in zeolites of ® nite extent.

We have developed and applied an open system KMC algorithm to explore the
extent to which strong anisotropy can lead to anomalous self-diŒusion in zeolite

membranes [29]. We have studied how the TCP-calculated self-diŒusivity depends

upon membrane thickness L and anisotropy . When normal diŒusion holds, the

self-diŒusivity is independent of membrane thickness, i.e. is an intensive quantity,

while anomalous diŒusion is characterized by an L-dependent self-diŒusivity. Our

simulations model cyclohexane in silicalite at T = 656 K with a total fractional
loading of T = 0.9. For convenience, we report the results in terms of the correlation

factor, f (L, ) = Ds/ D0(1 T). For 1, we ® nd that diŒusion is normal and

f (L, ) = 1, indicating that MFT becomes exact in this limit [29]. This is because

sorbate motion in the plane of the membrane is very rapid, thereby washing out any

correlations in the transmembrane direction. This is analogous to rapid SII ® SII

jumps washing out correlations in cage-to-cage motion of benzene in Na ± Y [31],

which helps to explain why MFT works so well for that system.

As is reduced, correlations between the motion of nearby molecules decrease

the counter-diŒusivity, as shown in ® gure 16 for = 0.01, 0.001 and 0. The = 0.01

diŒusivities are independent of membrane thickness for all cases studied, and hence
exhibit normal diŒusion for membranes as thin as 10 sites across. On the other hand,

the = 0.001 diŒusivities depend on membrane thickness for thin membranes, but

approach a constant limiting value for thicker membranes. This indicates that for

small values of , a relatively large lattice is required to reach the thick membrane

limit, such that particle exchange becomes probable during the intracrystalline
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Figure 16. KMC calculated self-diŒusivities in membranes of various thicknesses and
anisotropies, , using the TCP method. > 0 shows normal diŒusion for su� ciently
thick membranes, while = 0 (single-® le) is strictly anomalous.

lifetime. For thin membranes and small values of , a diŒusion mode with correlation

lengths comparable to the membrane thickness, i.e. a global mode of diŒusion,

dominates. The extreme case of this occurs when = 0 and diŒusion is strictly

single-® le. In this type of lattice there is no localized mechanism for diŒusion, and
the diŒusion coe� cient always depends on system size, as shown in ® gure 16.

The signature of anomalous self-diŒusion in single-® le zeolite membranes is thus

a diŒusivity that decreases monotonically with membrane thickness. The ® ndings
in ® gure 16 suggest that the single-® le self-diŒusivity scales as 1/ L, which can be

understood with the following simple picture. In order for an A particle to cross a

single-® le membrane, there must be no B particles in the ® le. The probability that a

given ® le contains no B particles scales as 1/ L. In section 4.2, we outline a theory

for single-® le self-diŒusion that accounts quantitatively for these anomalies using a

vacancy ± particle compound diŒusion mechanism [30].

4.2. Single-® le diŒusion in open systems

In this section we explore a compound (two-stage) mechanism for diŒusion in

strictly single-® le systems, wherein particle displacements of one lattice spacing are

produced by a vacancy traversing the entire length of the ® le [30]. We begin by

considering a single-® le system of length L = 6 with TCP boundary conditions, as
shown in ® gure 17. We imagine that the system is at steady-state with total occupancy

close to one, so that on average there will be no more than a single vacancy in the

® le. Each of the states in ® gure 17, steps (i)± (ix) is separated by an elementary jump

event. The entire sequence in ® gure 17 entails a single vacancy entering on the A side

of the ® le, travelling through the ® le and subsequently leaving on the B side. The
net eŒect of the vacancy transport through the ® le is displacement of the particles

by one lattice spacing to the left. Thus, a compound diŒusion mechanism operates

in single-® le systems, which requires a vacancy to diŒuse the entire ® le length to

generate particle displacements of one lattice spacing.

We now consider a thought experiment where vacancies within the lattice are

labelled by the side of the lattice on which they were created, e.g. an A vacancy is

created in the transition from steps (i) to (ii) in ® gure 17. In fact, an A vacancy is

created whenever a particle of either type desorbs into the A phase. In ® gure 17,
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190 S. M. Auerbach

Figure 17. Vacancy transport through an L = 6 single-® le system, with A particles (dark)
and B particles (light). Steps (i) through (vii) represent the passage of an À vacancy’
from right to left, giving particle displacement of one lattice spacing in the opposite
direction.

step (vii), the A vacancy exchanges with a B particle from the external B phase.

With this interpretation, we have a steady-state ¯ ux of A vacancies from left to right

through the lattice, and vice versa for the B vacancies, while unlabelled vacancies

have no net ¯ ux.

We now derive the L dependence of Ds assuming that the ¯ ux of A vacancies

obeys Fick’s law:

JV
A = DV

A Ñ V
A , (26)

where Ñ V
A is the A-vacancy concentration gradient, and DV

A is the apparent dif-
fusivity of A vacancies. At in® nite vacancy dilution, DV

A is equal to D0, the single-

component particle transport diŒusivity. Inspired by the compound diŒusion picture

developed above, we further assume that the ¯ ux of B particles is related to the ¯ ux

of A vacancies by the following ansatz:

JB =
JV

A

L 1
. (27)

The factor of (L 1) 1 arises because an A vacancy must traverse the length of the

® le, as shown in ® gure 17, to move particles by one lattice spacing. By exploiting the

properties of steady-state TCP, these assumptions lead to the following expression
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for Ds:

Ds =
D0 Tk2

d(L 1)

(1 T)(L 1) [ (L 1) + 2D0] 2D0 Tkd

. (28)

Equation (28) agrees quantitatively with results from open system KMC simulations

under TCP boundary conditions [30]. Furthermore, in the limit that L ® 1 , the

expression in equation (28) becomes:

Ds =
D0 (1 T)

L T

, (29)

which is precisely the expression recently obtained by Hahn and K Èarger for the
self-diŒusion coe� cient associated with centre-of-mass motion of particles within

the ® le [174]. Hahn and K Èarger obtained their expression by analysing the Gaussian

statistics of several correlated random walkers in a single-® le system. Our derivation

of equation (29) shows that Hahn and K Èarger’s result is consistent with assuming

that transport is diŒusion limited, which becomes valid in the long-® le limit. Our

result in equation (28) is also valid for short ® les, which exhibit sorption-limited
transport.

We ® nd it intriguing that a self-diŒusion coe� cient can be meaningfully de® ned

and derived for a strictly single-® le system, albeit of ® nite extent. It is irresistible to

wonder whether MSDs for this system can exhibit the t1/ 2 behaviour that charac-

terizes single-® le systems of in® nite extent. To address this question, we calculated

MSDs using open system KMC as follows. An L = 60 single-® le system was initially

® lled with particles up to an average occupancy of T = 0.9 throughout . Particles
in column 30 were labelled as B particles, while the remainder were labelled as A

particles. At t = 0, both edges of the system were exposed to a phase of A particles

with an insertion rate that maintained the equilibrium A occupancy at A = 0.9.

The results are shown in ® gure 18 on a log± log plot. The dotted lines have slope

equal to 1 indicating that the MSD is proportional to t, whereas the dashed line

has a slope of 1
2

indicating that the MSD is proportional to t1/ 2. The short time
behaviour is consistent with mean ® eld theory, where the dotted line is given by

Einstein’s equation with Ds = D0(1 T). At long times, the MSD in ® gure 18 (middle

dotted line) is again given by Einstein’s equation with Ds given by equation (28),

giving transport that is dominated by compound diŒusion. At intermediate times,

transport is achieved by a single-® le mode that operates as if the ® le were of in® nite

extent, with an MSD given by h R2(t)i = 2Ft1/ 2, where F is the single-® le mobility
[153, 174].

Using the theory derived above, the crossover time between single-® le diŒusion

and compound diŒusion in long ® les is given by tc = L2/ D0, which is precisely the

formula obtained by Hahn and K Èarger [174], and is proportional to the characteristic

time for vacancy diŒusion through the system [175]. That is, by the time a vacancy

has traversed the ® le, the extent of correlations becomes comparable to the ® le

length, the compound diŒusion mechanism dominates, and the MSD is once again
governed by Einstein’s equation, with a diŒusivity that is greatly diminished by

correlations according to equation (28). Hence, the ® le edges in¯ uence the motion

of all particles long before they reach the ® le edges.

Typical parameters for zeolite membrane permeation are L = 10 m and D0 =

10 6 cm2 s 1. These parameters give a crossover time of tc = 0.3 s, which happens

to fall just above the experimental window of observation for PFG NMR [170].
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192 S. M. Auerbach

Figure 18. Log ± log plot of MSDs calculated with KMC and theory for an L = 60 single-® le
system; from simulation (Ð ), MFT (left-most dotted line), single-® le diŒusion theory
with slope of 1/ 2 (- - -), and compound diŒusion theory giving slope of 1 (right-most
dotted line).

We therefore predict that PFG NMR measurements extended to longer times will

observe that MSD crossover from t1/ 2 to normal Fickian behaviour, except with a

long-time single-® le self-diŒusivity which depends upon system size.

Although the duration of single-® le diŒusion increases with ® le length, the
relative importance of single-® le motion decreases with ® le length. This becomes

clear by analysing the fraction of time that particles spend single-® le diŒusing while

adsorbed in a zeolite crystallite. This fraction is given by tc/ intra, where tc is the

crossover time and intra is the intra-crystalline residence time [172], which scales as

L2/ Ds. Since tc µ L2 while Ds µ 1/ L for long ® les, we see that the fraction of time
in single-® le diŒusion mode scales as 1/ L for long ® les. Ironically, while single-® le

diŒusion is more easily measured in longer ® les, compound diŒusion becomes the

dominant transport process in larger zeolite particles.

5. Concluding remarks

In this review, we have explored the interplay among dynamics, diŒusion and

phase equilibrium in nanopores. We have focused on atomistic and lattice models of
small to medium guest molecules in zeolite molecular sieves, because of their great

importance and versatility in science and industry. As a common theme running

through the review, we have highlighted our own calculations on benzene in Na ± X

and Na± Y zeolites, because of persistent, qualitative discrepancies between diŒerent

experimental probes of self-diŒusion for these systems.

We began by discussing the theory and practice of modelling rare event dynamics
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in zeolites, by considering how researchers develop force ® elds and implement

transition state theory (TST) with dynamical corrections. We ® nd that site-to-site
jump dynamics in zeolites are well described by TST when the initial or ® nal sites

involve relatively deep potential mimina, and that molecular jump dynamics in a

large pore zeolite is well described by including only a small number of degrees of

freedom. Challenges for future modelling include direct ab initio parametrization of

TST calculations on zeolites, TST with ¯ exible lattices for tight-® tting zeolite ± guest
systems, and TST applied to molecules in zeolites at ® nite loadings. Solving the latter

two problems will require progress in de® ning high-dimensional dividing surfaces.

Based on kinetic Monte Carlo (KMC) simulations of benzene in Na ± Y, we

have shown that non-exponentia l decay of the orientational correlation function

can disentangle the rates of intracage and intercage motion, and may indicate
heterogeneous aluminium agglomeration, leading to new NMR probes of zeolite

structure. In general, we believe that such modelling should be regarded as a

characterization tool complementary to diŒraction, NMR, IR, etc. The impact of

such modelling will grow by maintaining close connections with practitioners of

experimental characterization.

We then considered many-body adsorption and diŒusion in zeolites, in an eŒort
to begin bridging the gap between these two ® elds. We focused on mean ® eld

theory (MFT) and KMC applied to lattice models, which are natural for systems

dominated by jump diŒusion. Modelling many-body diŒusion in zeolites remains

challenging because of the coupling between rare event dynamics and strong guest ±

guest interactions. To address this, we outlined a model for determining how guest ±

guest interactions modify activation energies of site-to-site jumps. Based on this

model, our calculations for benzene in Na± X give excellent qualitative agreement

with PFG NMR diŒusivities and give qualitative disagreement with TZLC data.

We then explored the possibility that benzene can undergo phase transitions from

low to high sorbate density in Na ± X, analogous to vapour ± liquid equilibrium of
bulk benzene. Although our calculations suggest a critical temperature of 370 K,

this result is exquisitely sensitive to errors in the model. By exploring the impact of

this type of phase transition on diŒusion in zeolites, we explain intriguing loading

dependencies of water and ammonia diŒusion in terms of a subcritical droplet picture

of adsorption in zeolites. In general, we ® nd that understanding the thermodynamics

of con® ned ¯ uids can be crucial for elucidating the transport properties of molecules
in zeolites.

Finally, we discussed various formulations of non-equilibrium diŒusion through

lattice models of ® nite extent. We suggested that computing cross-correlated mean

square displacements may provide a feasible equilibrium approach for modelling

transport diŒusion in zeolites. We described a tracer counter-permeation KMC
algorithm, to search for the steady-state signature of anomalous transport in ® nite

single-® le systems. Our theory and simulations show that transport in ® nite single-® le

systems is characterized by a diŒusivity that decreases monotonically with ® le length.

Hence, except for the fact that this diŒusivity depends on ® le length, self-diŒusion in

single-® le systems is Fickian in the sense that Fick’s ® rst and second laws are obeyed
for a ® le of given length. We discussed the experimental implications of this ® nding

in the context of PFG NMR observation times. In general, we have found that

explicitly including adsorption and desorption phenomena in open system diŒusion

models is crucial for drawing qualitatively valid conclusions regarding single-® le

diŒusion.
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We hope that these computational studies can assist in the design of new

materials with advanced performance by elucidating the microscopic factors that
control adsorption, diŒusion and reaction in zeolites. While this dream is not yet

an everyday reality, examples exist today that have the ¯ avour of rational design
[176]. We believe that such design will become much more commonplace within the

next ten years, with the advent of better algorithms and faster computers. Perhaps

even more signi® cant is the prospect for cross-fertilization between zeolite science
and other ® elds. For example, it is intriguing to wonder whether single-® le diŒusion

through biological ion channels in cell membranes [177] occurs via the compound

diŒusion mechanism described above. Answering such a question will require even

further breakthroughs in our understanding of dynamics and diŒusion in nanopores.
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